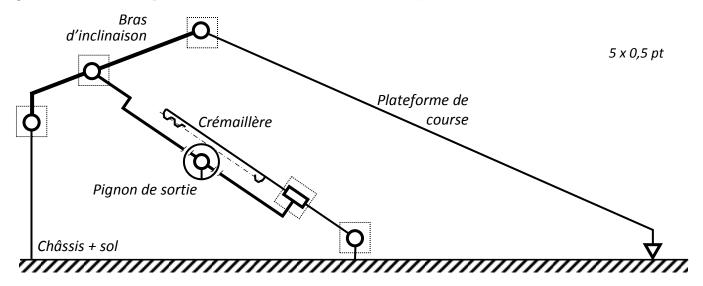


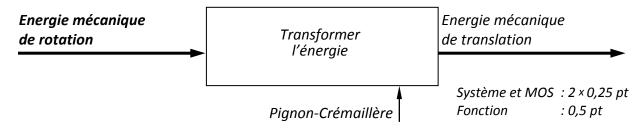
ELEMENTS DE REPONSE

Q1: Diagramme Bête à cornes relatif au tapis de course :

Q2: Diagramme d'interactions relatif au tapis de course :



Repère	Désignation		
FP	Reproduire les conditions de course à pied		
FC1	Assurer le confort du coureur		
FC2	Etre programmable par le coureur selon ses capacités physiques		
FC3	S'adapter à un local limité		
FC4	Etre alimenté en énergie électrique		
FC5	Respecter les normes et réglementation en vigueur (sécurités électrique et mécanique,)		
FC6	Avoir un bon design		


الصفحة 2 RR 8 46

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 – عناصر الإجابة - مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الكهربائية

Q3: Schéma cinématique minimal relatif à la fonction « Incliner la plateforme de course » :

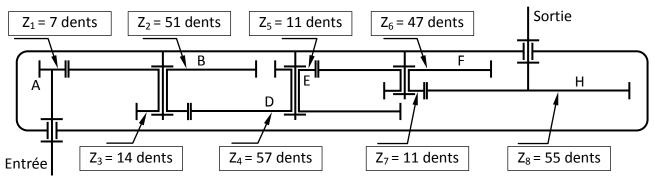
Q4: Actigramme à compléter :

Q5: Vitesse linéaire V_C de la crémaillère :

$$V_C = \frac{L_C}{T_r}$$
 0,5 pt; **A.N**: $V_C = \frac{102 \times 10^{-3}}{30} =$ **0**,**0034 m/s** 0,5 pt

Q6: Vitesse angulaire $\omega_{\rm S}$ du pignon de sortie :

$$V_C = \omega_S \frac{m \cdot Z_S}{2} \implies \omega_S = \frac{2V_C}{m \cdot Z_S}$$
 0,75 pt ; $\omega_S = \frac{2 \times 0,0034}{1,5 \times 10 \times 10^{-3}} =$ **0,453** rad/s 0,75 pt


Q7: Vitesse de rotation N_S du pignon de sortie :

$$\omega_{s} = \frac{\pi \cdot N_{s}}{30} \implies N_{s} = \frac{30\omega_{s}}{\pi} \quad 0.5 \ pt \quad ; \ N_{s} = \frac{30 \times 0.453}{3.14} = 4.328 \ tr/mn \quad 0.5 \ pt$$

Q8: Rapport de réduction \mathbf{r} du réducteur (R) :

$$r = \frac{Z_1 \cdot Z_3 \cdot Z_5 \cdot Z_7}{Z_2 \cdot Z_4 \cdot Z_6 \cdot Z_8} \quad 0.75 \ pt \quad ; \ r = \frac{7 \times 14 \times 11 \times 11}{51 \times 57 \times 47 \times 55} = \mathbf{1,578} \times \mathbf{10^{-3}} \qquad 0.5 \ pt$$

Schéma simplifié du réducteur (R)

الصفحة 3 RR 46

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 – عناصر الإجابة - مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الكهربائية

Q9: Vitesse de rotation N_m du moteur :

$$r = \frac{N_S}{N_m} \Longrightarrow N_m = \frac{N_S}{r}$$
 0,75 pt ; $N_m = \frac{4,35}{1,578 \times 10^{-3}} = 2756,65 \ tr/mn$ 0,5 pt

Q10: Puissance P_S à la sortie du pignon de sortie :

$$P_S = F_C \cdot V_C$$
 0,5 pt ; $P_S = 2100 \times 0,0034 = 7,14 W$ 0,5 pt

Q11: Puissance mécanique $\mathbf{P}_{\mathbf{mu}}$ utile au moteur d'inclinaison pour supporter la charge du coureur :

$$\eta_r = \frac{P_S}{P_{mu}} \Longrightarrow P_{mu} = \frac{P_S}{\eta_r} \quad 0.75 \ pt \quad ; \ P_{mu} = \frac{7.14}{0.8} = \mathbf{8.925} \ \mathbf{W} \quad 0.5 \ pt$$

Q12: Vitesse angulaire ω_m du moteur d'inclinaison :

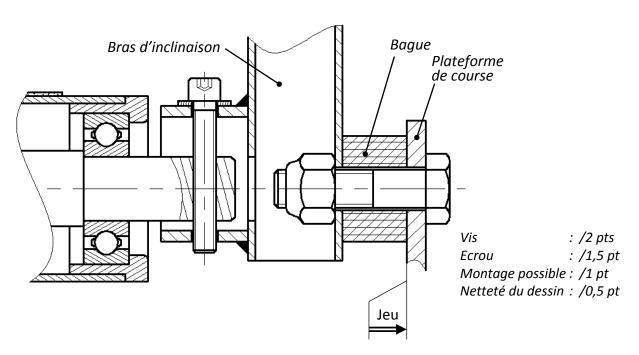
$$\omega_m = \frac{\pi \cdot N_m}{30}$$
 0,5 pt; $\omega_m = \frac{3,14 \times 2750}{30} = 287,833 \, rad/s$ 0,5 pt

Q13: Couple C_m développé par le moteur d'inclinaison :

$$P_{mu} = C_m \cdot \omega_m \Longrightarrow C_m = \frac{P_{mu}}{\omega_m} \ 0.5 \ pt \ ; \ C_m = \frac{9}{287,833} = \mathbf{0.031} \ \mathbf{Nm} \ 0.5 \ pt$$

 $\emph{Q14:}$ Couple de freinage C_f du moteur d'inclinaison :

$$C_f = f \cdot n \cdot F_p \frac{R+r}{2}$$
 0,75 pt ; $C_f = 0.45 \times 1 \times 10 \times \frac{(24+12) \times 10^{-3}}{2} = \mathbf{0}, \mathbf{081} \, \mathbf{Nm}$ 0,75 pt


OU

$$C_f = \frac{2}{3} \cdot f \cdot n \cdot F_p \frac{R^3 - r^3}{R^2 - r^2} \quad ; C_f = \frac{2}{3} \times 0.45 \times 1 \times 10 \times \frac{24^3 - 12^3}{24^2 - 12^2} \times 10^{-3} = \mathbf{0}, \mathbf{084} \ \mathbf{Nm}$$

Q15: Comparaison de C_f avec C_m et conclusion :

 $C_f > C_m$ (0,25 pt) donc le freinage est valide (0,5 pt)

Q16: Dessin à compléter :

Q17: Type de schéma du régime du neutre employé TT, IT ou TN:

Le régime TT

1 pt

Q18: Signification de chaque lettre pour le type du régime employé : 2x1 pt

T: le neutre est relié à la terre.

T: la masse des récepteurs est reliée à la terre.

Q19: Valeurs de la tension de contact U_c et du courant I_H : 2x1,5 pts

$$R_{bH} = R_b \cdot R_H / (R_b + R_H)$$
 et $U_c = V_s R_{bH} (R_{bH} + R_a)$ $A.N.:$ $R_{bH} \approx 19,73 \ \Omega$ et $U_c = 120,25 \ V.$ et $I_H = 80 \ mA.$

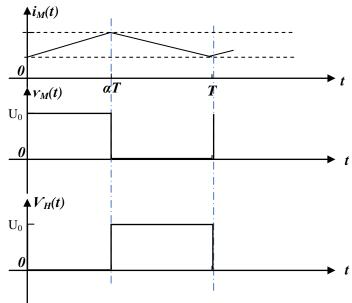
Q20: Est-il nécessaire de mettre hors tension l'installation? Justifier votre réponse en comparant les valeurs des tensions U_c et U_L .

Oui car
$$U_c > U_L$$

1,5 pt

Q21: Valeur du temps maximal t_c de coupure autorisé :

$$t_c = 0.34$$
 seconde.


1,5 pt

Q22: Type de conversion : Continu
Continu Continu

Q23: Rôle de la diode de roue libre D_{RL} :

Assure la continuité du courant $i_M(t)$ lorsque H est ouvert. 1 pt

Q24: Chronogrammes des tensions $v_M(t)$ et $v_H(t)$: 2x1 pt

Q25: Valeur moyenne V_M :

$$V_{M} = \alpha U_{0}$$

1,5 pt

Q26: On montre que l'expression de $V_M = E' + R \cdot I_M$:

On
$$a: v_M = L \cdot dI_M / dt + E' + RI_M$$
 et

$$V_M = E' + RI_M (car : L \cdot dI_M/dt = 0 puisque I_M = Cte)$$
 2 pts

Q27: Valeur du rapport cyclique α:

On
$$a: V_M = \alpha U_0 = E' + R \cdot I_M$$
 donc $\alpha = (E' + R \cdot I_M)/U_0$ 1 pt $\underline{A.N:}$ $\alpha \approx 0.43$. 0.5 pt

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - عناصر الإجابة

- مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الكهربائية

Q28: Vitesse de synchronisme N_s en tr/mn du moteur :

$$N_s = f \cdot 60/p$$
 1 pt $A.N$: $N_s = 3000 \text{ tr/mn}$ 0,5 pt

Q29: Valeur du glissement g en %:

$$g = (N_s - N)/N_s$$
 1 pt $A.N$: $g = 8,3 \%$ 0,5 pt

Q30: Puissance utile P_u :

$$P_u = C_u \cdot \Omega$$
 1,5 pt $\underline{A.N}$: $P_u \approx 89.8 \text{ W. } 0.5 \text{ pt}$

Q31: Type (la référence) du moteur :

Q32: Calcul de la valeur :

a. de la puissance absorbée P_a par le moteur ;

$$P_a = P_u/\eta$$
 0,5 pt A.N.: $P_a = 180 \text{ W}$ 0,5 pt

b. du courant de démarrage I_D sous la tension $V_s = 230 \text{ V}$.

$$I_D / I_N = 3.4$$
 donc $I_D = 3.4 I_N$ 0.5 pt $A.N$: $I_D = 3.06 A$. 0.5 pt

Q33:

$$e_{-} = \frac{U_{S3}}{\frac{2}{2}} + \frac{U_{S2}}{\frac{2}{2}}$$
 0,75 pt
 $e_{+} = \frac{U_{S1}}{\frac{2}{2}}$ 0,75 pt
 $\Rightarrow U_{S3} = U_{S1} - U_{S2}$ 0,5 pt

Q34:

a.

$$I = \frac{U_{S1} - U_{S2}}{R_1 + R_2 + R_3} = \frac{U_{S1} - U_{S2}}{2R + R_2}$$
 1 pt

b. Etant donné que (e_.= e₊) pour AOP₁ et AOP₂, alors

$$I = \frac{U_{E1} - U_{E2}}{R_2}$$
 1 pt

c.

$$U_{S1} - U_{S2} = (U_{E1} - U_{E2}) \frac{2R + R_2}{R_2} = (U_{E1} - U_{E2}) \left(1 + \frac{2R}{R_2}\right) \Rightarrow U_{S1} - U_{S2} = (U_E)(1 + \frac{2R}{R_2})$$
 1,5 pt

Q35:

$$U_{S3} = U_{S1} - U_{S2} = (U_E) \left(1 + \frac{2R}{R_2} \right) = A_0 \cdot U_E \text{ avec } A_0 = \left(1 + \frac{2R}{R_2} \right)$$
 1,5 pt

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - عناصر الإجابة 8 RR - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الكهربائية

Q36:

En posant Z=(R₉//C₁)
$$\underline{Z} = \left(\frac{R_9}{1 + jR_9C_1\omega}\right)$$

$$\underline{U_{S4}} = -\underline{U_{S3}}\frac{\underline{Z}}{R_8} = -\underline{U_{S3}}\frac{R_9}{R_8}\frac{1}{1 + jR_9C_1\omega} (Ampli. inverseur)$$

$$\underline{U_{S4}} = -\underline{U_{S3}}\frac{R_9}{R_8}\frac{1}{1 + j\frac{f}{f_0}}$$

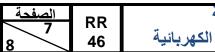
$$\underline{U_{S4}} = -\underline{U_{S3}}(A_1\frac{1}{1 + j\frac{f}{f_0}})$$
2 pts

•
$$A_1 = R_9 / R_8$$
. 0,5 pt
• $f_0 = 1/2\pi R_9 C_1$. 0,5 pt

Q37:

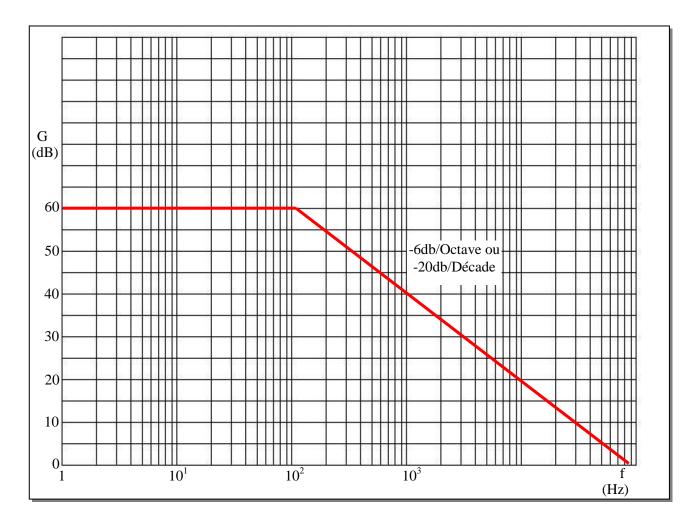
$$\underline{U_{S4}} = -\underline{U_{S3}}(A_1 \frac{1}{1+j\frac{f}{f_0}}) = -\underline{U_{E.}}A_0.A_1(\frac{1}{1+j\frac{f}{f_0}})$$
 1 pt

Q38:


$$\underline{A_V} = \frac{\underline{U_{S4}}}{\underline{U_E}} = -A_0.A_1(\frac{1}{1+j\frac{f}{f_0}})$$
 1 pt

Q39:

•
$$A_0 = \left(1 + \frac{2R}{R_2}\right) \Rightarrow R_2 = 2R/(A_0 - 1)$$
 2x0,5 pt
 $\Rightarrow R_2 = 2,22 \text{ k}\Omega$


•
$$A_1 = \left(\frac{R_9}{R_8}\right) \Rightarrow R_9 = (A_1 \cdot R_8)$$
 2x0,5 pt

•
$$f_0 = \left(\frac{1}{2\pi R_9 C_1}\right) \Rightarrow C_1 = \left(\frac{1}{2\pi R_9 f_0}\right)$$
 2x0,5 pt
 $\Rightarrow C_1 = 1,59 \text{ nF}$

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 – عناصر الإجابة - مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الكهربائية

Q40: 2 pts

Q41:

L'entrée RA1 du μC doit être configurée en mode analogique.

1 pt

الصفحة 8 RR 8 46

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - عناصر الإجابة - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الكهربائية

Q42:

9x1 pt

Label	Code machine	Opérande	Commentaire		
;Sous-Program					
, 2000 100 100 800000	ORG	0x004	; adresse d'interruption		
;sauvegarder les registres					
8	BCF	INTCON, GIE			
	MOVWF	SAVE_W	; sauver registre W		
	SWAPF	STATUS, w	; swap status avec résultat dans w		
	MOVWF	SAVE_STATUS	; sauver status swappé		
;Traitement de l'interruption de RB0/INT (ILS)					
	BTFSS	INTCON, INTF	; Test si interruption RB0/INT?		
	GOTO	Test_INT_Timer_0			
	BCF	INTCON, INTF	; Effacer flag d'interruption INTF		
	INCF	Count_ILS, F			
;Traitement de l'interruption de TMR0 (Vitesse Moteur et rythme cardiaque)					
Test_INT_Timer_0					
	BTFSS	INTCON, T0IF	; Test si interruption Timer 0?		
	GOTO	RestoreStatus			
	BCF	INTCON, T0IF	; Effacer flag interruption TOIF		
; Mesure de la vitess	e du tapis				
	DECFSZ	Count_65536	; Test d'écoulement d'une seconde ?		
	GOTO	RestoreStatus			
	MOVF	Count_ILS, W			
	CALL	Calcul_Vitesse_Tapis			
	MOVWF	Vitesse_Tapis			
; Mesure du rythme					
	DECFSZ	Count_15s			
	GOTO	RestoreStatus			
	BCF	STATUS, C	Préparer la multiplication		
	RLF	Count_RC, F			
	BCF	STATUS, C	Préparer la multiplication		
	RLF	Count_RC, F			
	MOVF	Count_RC, W			
	MOVWF	Rythme_Cardiaque_bpm			
	MOVLW	<u>15</u>			
	MOVWF	Count_15s			
;Restaurer les re	egistres				
RestoreStatus					
	SWAPF	SAVE_STATUS, W	; swap ancien status, résultat dans W		
	MOVWF	STATUS	; restaurer status		
	SWAPF	SAVE_W, F	; Inversion L et H W sans modifier Z		
	SWAPF	SAVE_W, W	; W restauré		
	RETFIE		; retour d'interruption		