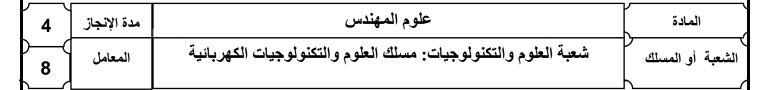
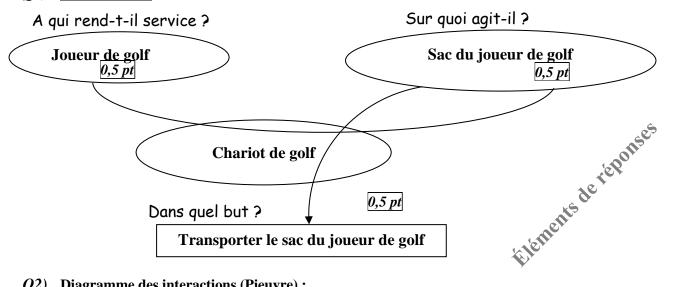


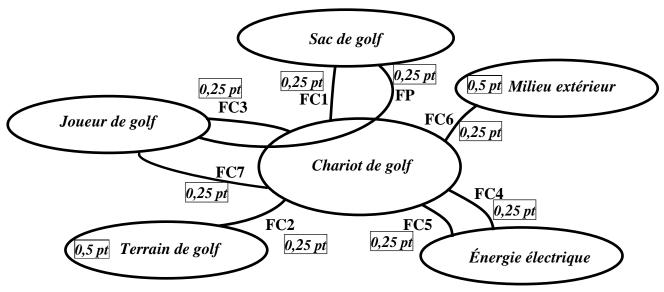
# الامتحان الوطني الموحد للبكالوريا


+.XNAX+ I NEYOXO V 80E8++X 9XX8Nº 




الدورة الاستدراكية 2018 -عناصر الإجابة -

**RR 46** 

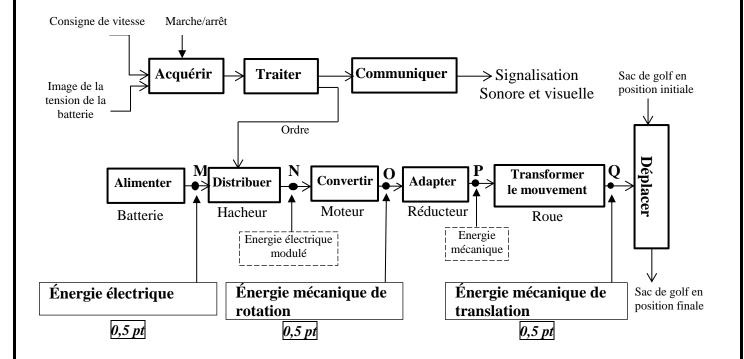

المركز الوطنى للتقويم والامتحانات والتوجيه



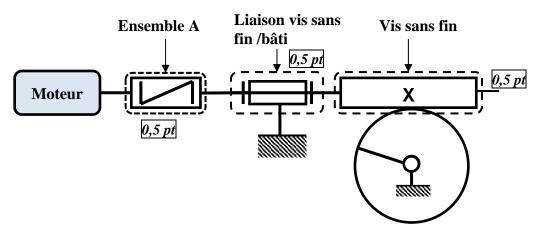
## Q1) Bête à cornes :



## **Q2)** Diagramme des interactions (Pieuvre):




| Tableau des fonctions de service |                                             |  |  |  |
|----------------------------------|---------------------------------------------|--|--|--|
| FP                               | Transporter le sac du joueur de golf        |  |  |  |
| FC1                              | S'adapter au sac de golf                    |  |  |  |
| FC2                              | S'adapter au terrain de golf                |  |  |  |
| FC3                              | Être facile à manipuler                     |  |  |  |
| FC4                              | Assurer une autonomie en énergie électrique |  |  |  |
| FC5                              | S'adapter à la source d'énergie électrique  |  |  |  |
| FC6                              | Résister au milieu ambiant (pluie, soleil,) |  |  |  |
| FC7                              | Être beau à voir                            |  |  |  |


الامتدان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 – عناصر الإجابة 2018 – عاصفحة ماحة: عُلوم المصندس — شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الكسربائية

#### Q3) Type d'énergie :

#### Chaine fonctionnelle du chariot de golf



### Q4) Le schéma cinématique :



#### **Q5**) Nom et fonction de l'ensemble A

| Nom de l'ensemble A | Fonction                                                                                      |      |
|---------------------|-----------------------------------------------------------------------------------------------|------|
|                     | Lier l'arbre moteur à l'arbre récepteur en corrigeant (acceptant) les défauts<br>d'alignement | 1 pt |

| مه حرا الصفحة     | الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 — غناصر الإجابة            |  |
|-------------------|----------------------------------------------------------------------------------------|--|
| 3 KK 46           |                                                                                        |  |
| الصفحة<br>7 RR 46 | – ماحة: غلوم الممندس — متعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الكمربائية |  |

 $m{Q6}$ ) Nom et fonction de l'élément  $m{J}$ 

| Nom de l'élément J      | Fonction                                                        |      |
|-------------------------|-----------------------------------------------------------------|------|
| Joint d'étanchéité 1 pt | Assurer l'étanchéité statique entre les deux parties du carter. | 1 pt |

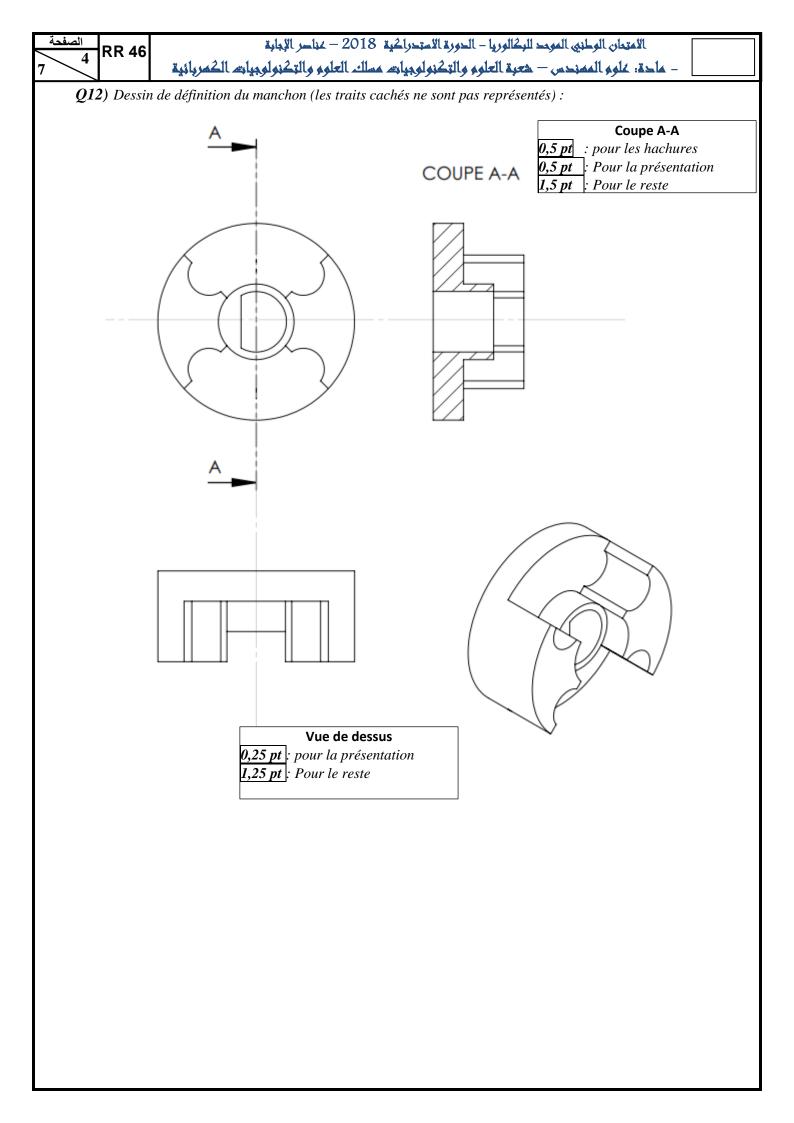
Q7) Tableau des caractéristiques définissant la roue dentée 2.

|                  | Nombre   | Angle    | Module         | Module                                  | Pas                             | Diamètre                                                             | Diamètre           | Diamètre de                                                 | Hauteur                                                                                     |
|------------------|----------|----------|----------------|-----------------------------------------|---------------------------------|----------------------------------------------------------------------|--------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                  | de dents | d'hélice | réel           | apparent                                | apparent                        | primitif                                                             | de tête            | pied                                                        | de la                                                                                       |
|                  | Z        | β        | $\mathbf{m_n}$ | $\mathbf{m}_{\mathbf{t}}$               | $\mathbf{P_t}$                  | <u>d</u>                                                             | $\mathbf{d_a}$     | $\mathbf{d_f}$                                              | dent <b>h</b>                                                                               |
| Formules         |          |          |                | $m_t = \frac{0.25 p}{m_n}$ $\cos \beta$ | $P_t = \frac{0.25 p}{\pi. m_t}$ | $d = \begin{bmatrix} 0.25 & p_t \\ d = \\ m_t \cdot Z \end{bmatrix}$ | $d_a = d + 2 m_n$  | $d_f = \begin{cases} 0.25 \ p \\ d - 2.5 \ m_n \end{cases}$ | $   \begin{array}{c c} t & 0.25 & pt \\         h & = \\         2,25 & m_n   \end{array} $ |
| Roue<br>dentée 2 | 50       | 15,466°  | 1,6            | 0,25 pt<br>1,66 mm                      | 0,25 pt<br>5,21mm               | 0,25 pt<br>83 mm                                                     | 0,25 pt<br>86,2 mm | <i>0,25 pt</i><br>79mm                                      | 0,25 pt<br>3,6 mm                                                                           |

 $\it Q8$ ) Calcul du rapport de réduction  $\it k$ :

$$k = \frac{z_{vis}}{z_{roue}} = \frac{z_1}{z_2} = \frac{2}{50} = \frac{1}{25}$$

**Q9**) L'expression de la vitesse de rotation des roues **Nr**.


$$k = \frac{N_r}{N_m} \rightarrow N_r = k.N_m$$

Q10) L'expression de la vitesse de déplacement de la roue sur le sol Vr.

$$V_r = \omega_r \cdot \frac{d}{2} = \frac{2.\pi \cdot N_r}{60} \cdot \frac{d}{2} = \frac{\pi \cdot N_r \cdot d}{60}$$

Q11) Tableau des vitesses:

| N <sub>m</sub> en tr/min | 200       | 1225       | 3105                 | 4000          |
|--------------------------|-----------|------------|----------------------|---------------|
| N <sub>r</sub> en tr/min | 8 0,25 pt | 49 0,25 pt | 124,2 0,25 pt        | 160 0,25 pt   |
| V <sub>r</sub> en km/h   | 0,25 pt   | 0,25 pt    | 7,023 <i>0,25 pt</i> | 9,047 0,25 pt |



**RR 46** 

الامتحان الوطني الموحد للركالوريا – الدورة الاستحراكية 2018 – عناصر الإجارة

– ماحة: عُلُوهِ المُستِدس — هُعِبَةُ العلومِ والتِكْنُولُوجِياتِ مُسلَكُ العلومِ والتِكْنُولُوجِياتِ الْكُسُرُوائِية

Q13) Calcul de l'énergie maximale  $W_{max}$  en wattheures (Wh) disponible dans la batterie ;

$$W_{max} = C.E_{Bat}.$$
 1,5 pt

$$A. N: W_{max} = 288 Wh$$

Q14) Calcul de l'autonomie t en heures :

$$W = P_a \cdot t \Leftrightarrow t = \frac{W}{P_a} I_{,5} pt$$
  $A.N: t = 5 \text{ heures} 0,5 pt$ 

$$A.N: t = 5 heures \quad 0.5 pt$$

Q15) La valeur de la distance d (en km) que peut assurer la batterie :

$$v = \frac{d}{t} \Leftrightarrow d = v.t$$
 [1,5 pt]

$$A. N: d = 15 km \ 0.5 pt$$

Q16) Calcul du rapport de transformation m:

$$m = \frac{U_2}{U_1} = \frac{N_2}{N_1} \quad \boxed{1.5 \text{ pt}}$$

$$A.N: m \approx 0,052$$
  $0.5 pt$ 

**Q17**) Le nombre de spires  $N_2$ :

$$N_2 = m.N_1$$
 1,5 pt

$$A.N: N_2 = 26 \text{ spires } 0.5 \text{ pt}$$

**Q18**) Calcul de la valeur du courant nominal  $I_{2N}$ :

$$I_{2N} = \frac{S}{U_{2N}} \qquad \boxed{1.5 \text{ pt}}$$

$$I_{2N} = \frac{S}{U_{2N}}$$
  $I_{2N} = \frac{85}{12} \approx 7,08 \, A \, 0.5 \, pt$ 

**Q19**) Tableau :

 $8 \times 0.25 \, pt$ 

| Diodes                  | $\mathbf{D_1}$ | $\mathbf{D}_2$ | $\mathbf{D}_3$ | D <sub>4</sub> |
|-------------------------|----------------|----------------|----------------|----------------|
| La tension $u_2(t) > 0$ | Passante       | Bloquée        | Bloquée        | Passante       |
| La tension $u_2(t) < 0$ | Bloquée        | Passante       | Passante       | Bloquée        |

**Q20**) La tension inverse maximale  $V_{D1max}$ :

2 pts

$$V_{D1max} = 12 \cdot \sqrt{2} \approx 16,97 V$$

Q21) Calcul de la valeur du courant nominal  $I_{IN}$  au primaire du transformateur :

$$I_{1N} = \frac{S}{U_{1N}} \quad \boxed{1.5 \text{ pt}}$$

$$A.N:I_{1N}=\frac{85}{230}=0.37 A \quad 0.5 pt$$

**Q22**) Le calibre et la référence du fusible :

1,5 pt

Calibre: 400 mA; Référence: 13.8748-10

**Q23**) La durée de fusion (intervalle):

1,5 pt

Entre 150 ms et 3 s ou [150 ms, 3 s]

O(24)

Q24-1) La valeur de la fréquence f en Hz:

 $f = \frac{1}{r} \qquad Ipt \qquad AN: f = 7692 Hz$ 

0.5 pt

**Q24-2**) La valeur du rapport cyclique  $\alpha$  (en %):

$$\alpha = \frac{t_{on}}{T}$$
  $I p$ 

$$\alpha = \frac{t_{on}}{T}$$
 Ipt  $\alpha = 50 \%$  0.5 pt

**Q25**)  $U_m$  en fonction de  $E_{Bat}$  et de  $\alpha$ :

$$U_m = E_{Bat} \cdot \alpha$$
  $1.5 pt$   $A. N: U_m = 6 V 0.5 pt$ 

$$A. N: U_m = 6 V \overline{0.5 pt}$$

– مادة: عُلُوهِ المُمنِدسِ — شَعِبَةُ العَلُوهِ وِالتَّكْنُولُوجِياتِ مُسَاكُ العَلُوهِ وَالتَّكْنُولُوجِياتِ الْكُمُرِيائِية

**Q26**) Expression de **A** et de **B**:

$$A = H_2 \cdot H_3 \cdot H_4 \cdot H_5$$
  $0.75 pt$   $et$   $B = H_r$   $0.75 pt$ 

*Q27*)

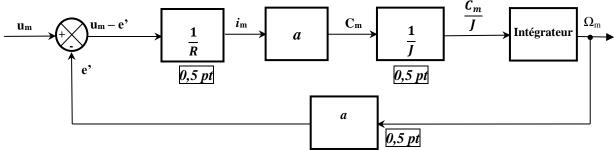
$$Q27-1) \quad T_{BO} = \frac{U_r}{\varepsilon} = A \cdot B \quad \boxed{1,5 \text{ pt}}$$

Q27-2) 
$$T_{BF} = \frac{\Omega_r}{U_c} = \frac{A}{1+A\cdot B}$$
 2 pts

Q28) On montre que 
$$\left(\frac{RJ}{a^2}\right)\frac{d\Omega_m}{dt} + \Omega_m = \frac{u_m}{a}$$

On a: 
$$e' = a \Omega_m$$

$$C_m = a.i_m$$


et 
$$u_m = e' + R.i_m \implies i_m = \frac{u_m - e'}{R} = \frac{u_m - a.\Omega_m}{R}$$

$$J\frac{d\Omega_m}{dt} = C_m = a.i_m = a.\frac{u_m - a\Omega_m}{R}$$
 donc  $\frac{d\Omega_m}{dt} + \frac{a^2}{RJ}.\Omega_m = \frac{a.u_m}{RJ}$ 

D'où 
$$\left(\frac{RJ}{a^2}\right)\frac{d\Omega_m}{dt} + \Omega_m = \frac{u_m}{a}$$
 2 pts

**Q29**) L'ordre du système :

**Q30**) Schéma bloc du moteur :



**Q31**) Calcul de  $R_1$  et de  $R_2$ :

Calcul de 
$$R_1: V_{cc} = R_1 I_F + V_D \Rightarrow R_1 = \frac{V_{cc} - V_D}{I_F}$$
 [1,5 pt]

$$A.\,N:\,R_1=175\,\Omega\qquad 0.5\,pt$$

Calcul de 
$$R_2: R_2 = \frac{V_{cc}}{I_{Sat}}$$
 [1,5 pt]

$$A. N: R_2 = 10 \ k\Omega \quad 0.5 \ pt$$

Q32) Les valeurs de la tension uv suivant l'état du phototransistor :

|                        | Tension uv en Volts |
|------------------------|---------------------|
| Phototransistor saturé | 0 0,5 pt            |
| Phototransistor bloqué | 5 0,5 pt            |

**Q33**) On montre que :  $f = \frac{N_{mot}}{60} \cdot K \cdot R$ 

On 
$$a: f = N_d \cdot R$$
 et  $N_d = \frac{N_{mot}}{60} \cdot K$ , d'où  $f = \frac{N_{mot}}{60} \cdot K \cdot R$ 

Q34) 
$$f_{min} = 9.6 \text{ Hz}$$
 I positive  $f_{max} = 192 \text{ Kz}$ 

**RR 46** 

الامتدان الوطني الموحد للبكالوريا - الدورة الاستحراكية 2018 - عناصر الإجابة

– مادة: غلوم الممندس — هعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الكمربائية

**Q35**) Expression de  $U'_{Tmoy}$  en fonction de f:

$$U'_{Tmoy} = \frac{T_0}{T} \cdot V_{cc}$$
  $d'où U'_{Tmoy} = T_0 \cdot V_{cc} \cdot f = 0,01 \cdot f$  I pt

**Q36**) Type du filtre:

Filtre passe-bas 1 pt

**Q37**) La plages de variation de  $U_r$ :

$$U_{r min} = 0,01. f_{min}$$
  $0,75 pt$   $0.25 pt$   $0.25 pt$ 

$$U_{r max} = 0,01. f_{max}$$
  $0,75 pt$   $0,75 pt$   $0,25 pt$ 

Q38) les valeurs numériques de N:

$$N_1 = 255 \cdot \frac{U_{r\,min} - V_{REF-}}{V_{REF+} - V_{REF-}}$$
  $AN: N_1 = 5$   $Ipt$ 

$$N_2 = 255 \cdot \frac{U_{r max} - V_{REF-}}{V_{REF+} - V_{REF-}} \qquad AN: \quad N_2 = 102 \quad \boxed{1 pt}$$

Q39) Le programme Assembleur 0.5 pt x 12 = 6 pts

| Label | Mnémonique | Opérande    | Commentaire                           |
|-------|------------|-------------|---------------------------------------|
| Test  | CALL       | Acquisition | ; Appel au sous-programme Acquisition |
|       | CALL       | E_bip       | ; Appel au sous-programme E_bip       |
|       | MOVLW      | D'199'      | ; Charger W par la valeur 199         |
|       | SUBWF      | Adr_NBat,W  | ; Comparer (adr_NBat) à W             |
|       | BTFSC      | STATUS,C    | ; Sauter si NBat < 199                |
|       | GOTO       | Fin         | ; Aller à la fin                      |
|       | CALL       | E_bip       | ; Appel au sous-programme E_bip       |
|       | MOVLW      | D'183'      | ; Charger W par la valeur 183         |
|       | SUBWF      | Adr_NBat,W  | ; Comparer (adr_NBat) à W             |
|       | BTFSC      | STATUS,C    | ; Sauter si NBat < W                  |
|       | GOTO       | Fin         | ; Aller à la fin                      |
|       | CALL       | E_bip       | ; Appel au sous-programme E_bip       |
| Fin   | RETURN     |             |                                       |