

الكيمياء (7 نقط)

مرجع السوّال في الإطار المرجعي	التنقيط	عناصر الإجابة	السؤال	التمرين
- كتابة المعادلة المنمذجة للتحول حمض ـ قاعدة وتعرف المزدوجتين المتدخلتين في التفاعل.	0,5	$AH_{(aq)} + H_2O_{(\ell)} \Longrightarrow A_{(aq)}^- + H_3O_{(aq)}^+$.1	
- إنشاء الجدول الوصفي لتقدم التفاعل واستغلاله.	0,75	الجدول الوصفي للتفاعل	.2	
	0,5	الطريقة	.3	
 تعريف نسبة التقدم النهائي لتفاعل وتحديدها انطلاقا من معطيات تجريبية. 	0,25	$\tau = 5,25\%$	4	র
	0,25	التفاعل محدود $ au < 1$.4	العز الكيمياء
انطلاقا من معادلة التفاعل واستغلاله. Q_r انطلاقا من معادلة التفاعل واستغلاله.	0,75	الطريقة	.5	o' E
معرفة أن $Q_{r,\acute{e}q}$ خارج التفاعل لمجموعة في حالة توازن يأخذ قيمة لا تتعلق بالتراكيز تسمى ثابتة التوازن K الموافقة لمعادلة التفاعل. K كتابة تعبير ثابتة الحمضية K_A الموافقة لمعادلة تفاعل حمض مع الماء واستغلاله. $pK_A = -\log K_A$.	0,75	$pK_{_A}$ التحقق من قيمة	.6	1 ज़िंदी)
- تعيين النوع المهيمن، انطلاقا من معرفة pH المحلول المائي و pK_A المزدوجة (قاعدة/حمض).	0,5	النوع المهيمن $AH_{(aq)}+$ التعليل	.7	

الصفحة 2 RR 27

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الزراعية

 معرفة التركيب التجريبي للمعايرة. 	0,5	 pH - متر محلول مائي لهيدروكسيد الصوديوم محلول حمض الأزيليك 	.1	
- كتابة معادلة التفاعل الحاصل أثناء المعايرة (باستعمال سهم واحد).	0,5	$AH_{(aq)} + HO_{(aq)}^{-} \to A_{(aq)}^{-} + H_2O_{(\ell)}$.2	<u></u>
 استغلال منحنى أو نتائج المعايرة. 	0,5	pH_{E} تقبل كل قيمة pH_{E} المحصورة بين PH_{E} المحصورة بين $V_{BE}=10~mL$.3	2 8.3
 معلمة التكافؤ خلال معآيرة حمض ـ قاعدة واستغلاله. 	0,5	$C = 10^{-2} \ mol.L^{-1}$.4	
	0,75	التحقق من الإشارة «حمض الأزيليك 10% »	.5	

الفيزياء (13 نقطة)

مرجع السؤال في الإطار المرجعي	التنقيط	عناصر الإجابة	السوال	التمرين
 تعریف نواة مشعة. 	0,5	التعريف	.1	
معرفة مدلول الرمز ${}^{A}_{Z}X$ وإعطاء تركيب النواة التي يمثلها.	0,5	79 بروتون ؛ 119 نوترون	.2	
- معرفة واستغلال قانوني الانحفاظ. - كتابة المعادلة النووية بتطبيق قانوني الانحفاظ.	0,5	$^{198}_{79}Au \rightarrow ^{198}_{80}Hg + ^{0}_{-1}e$.3	التمرين 1
 تعریف وحساب النقص الکتلي وطاقة الربط. 	0,5	$\mathscr{C}(^{198}_{79}Au)$ التحقق من قيمة	.4	ر 3,5 نقط) (3,5 نقط)
 تعریف وحساب طاقة الربط بالنسبة لنویة واستغلالها. 	0,5	التعليل	.5	` , ,
. $E_{lib\acute{e}r\acute{e}e}=\left \Delta E ight $. حساب الطاقة المحررة (الناتجة) من طرف تفاعل نووي:	0,5	$E_{lib\acute{e}r\acute{e}e}=0,845~MeV$ التوصل إلى	.6	
- معرفة واستغلال قانون التناقص الإشعاعي واستثمار المنحنى الذي يوافقه.	0,5	$a = 3,78.10^3 \; Bq$ التوصل إلى	.7	

الصفحة 3 RR 27

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الزراعية

مرجع السؤال في الإطار المرجعي	التنقيط	عناصر الإجابة	السوال	مرين	الت
- تمثيل التوترين u_R و u_C في الاصطلاح مستقبل وتحديد شحنتي لبوسي مكثف.	0,5	تمثیل u_R و u_R في اصطلاح مستقبل	.1		
- تعرُف وتمثيل منحنيات تغير التوتر بين مربطي المكثف والمقادير المرتبطة به بدلالة الزمن واستغلالها.	0,5	المنحنى 1 + التعليل	.2		
ا ثبات المعادلة التفاضلية والتحقق من حلها عندما يكون ثنائي القطب RC خاضعا -	0,5	الطريقة	.3		
لرتبة توتر.	0,5	au=R.C التوصل إلى $ au=R.C$.4	Ā	
- تحديد سعة مكثف مبيانيا وحسابيا. - معرفة واستغلال تعبير ثابتة الزمن.	0,5	$C = 3 \mu F$.5	7	_
- تحدید تعبیر التوتر u_c (الاستجابة) بین مربطي مكثف عند خضوع ثنائي القطب RC لرتبة توتر واستنتاج تعبیر شدة التیار المار في الدارة وتعبیر شحنة المكثف.	0,5	A	.6		التمرين 2
 معرفة واستغلال منحنيات الطاقة. 	0,5	يمثل المنحنى الطاقة الكهربائية ﴿ المخزونة في المكثف + التعليل	.1		(5,5 :ब्रंप)
	0,5	التفسير	.2		4
- استغلال وثائق لـ: ◄ تعرف التوترات الممثلة؛ ◄ تحديد قيمة الدور الخاص.	0,5	$T_0 = 4 ms$.3	لجزء 2	
 معرفة واستغلال تعبير الدور الخاص. 	0,5	$L = 0.135 \; H$ التوصل إلى $L = 0.135 \; H$.4		
- معرفة واستغلال منحنيات الطاقة. - معرفة واستغلال تعبير الطاقة الكلية للدارة.	0,5	$\mathscr{E}_m = 1, 5.10^{-4} J$ التوصل إلى	.5		

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الزراعية

مرجع السؤال في الإطار المرجعي	التنقيط	عناصر الإجابة	السوال	التمرين
- تطبيق القانون الثاني لنيوتن لإثبات المعادلة التفاضلية لحركة مركز قصور جسم صلب على مستوى أفقي أو مائل وتحديد المقادير التحريكية والحركية المميزة للحركة.	0,5	الطريقة	.1	
. $v_G(t)$ مخطط السرعة - استغلال مخطط السرعة	0,5	$a_G = 1.5 \text{ m.s}^{-2}$.1.2	5
	0,25	حركة مستقيمية متغيرة بانتظام + التعليل	.2.2	7.
	0,25	f = 16 N	.3	T
 معرفة واستغلال مميزات الحركة المستقيمية المتغيرة بانتظام ومعادلاتها الزمنية. 	0,5	$t_A = 15 s$ التوصل إلى $t_A = 15 s$.4	;i
	0,5	OA = 281 m التوصل إلى	.5	(4)
معرفة مدلول المقادير الفيزيائية الواردة في تعبير المعادلة الزمنية $\chi_G(t)$ للمتذبذب (جسم صلب ـ نابض) وتحديدها انطلاقا من الشروط البدئية.	0,5	$T_0 = 1,57 s$.1	, ख़द्र)
- معرفة واستغلال تعبير الدور الخاص والتردد الخاص للمتذبذب) جسم صلب ـ نابض).	0,5	$K=20\;N.m^{-1}\;$ التوصل إلى	.2	Ā
$x_G\left(t ight)$. تحديد طبيعة حركة الجسم الصلب وكتابة المعادلات الزمنية: $\ddot{x}_G\left(t ight)$ و $\ddot{x}(t)$ و استغلالها. $\ddot{x}(t)$ و $v_G(t)=rac{dx}{dt}$	0,5	$\dot{x}_G=0,2~m.s^{-1}~$ التوصل إلى $\dot{x}_G=0$.3	2 8