

تمرین 1 (7 نقط)				
مرجع السؤال في الإطار المرجعي	سلم التنقيط	عناصر الإجابة	السنؤال	
تفسير اشتغال عمود بالتوفر على المعلومات التالية: منحى مرور التيار الكهربائي، و f.é.m ، و التفاعلات عند الإلكترودين، وقطبية الإلكترودين، وحركة حملات الشحنة الكهربائية.	0,25 0,25	الإلكترود الموجب :الحديد التعليل	1	
إ-كتابة معادلة التفاعل الحاصل عند كل لكترود(باستعمال سهمين) والمعادلة الحصيلة أثناء اشتغال العمود(باستعمال سهم واحد).	3x0,25	المعادلة عند كل إلكترود + المعادلة الحصيلة	2	الجزء 1
-إيجاد العلاقة بين كمية المادة للأنواع الكيميائية المتكونة أو المستهلكة وشدة التيار ومدة اشتغال العمود،واستغلالها في تحديد مقادير أخرى (كمية الكهرباء، تقدم التفاعل، تغير الكتلة).	0,75 0,25	البر هنة ∆m≈8,7.10 ⁻² g	3	
-كتابة المعادلة المنمذجة للتحول حمض ـ قاعدة وتعرُف المزدوجتين المتدخلتين في التفاعل.	0,5	معادلة التفاعل	1-1	
- كتابة تعبير ثابتة الحمضية _{لا} لموافقة لمعادلة	0,5	التحقق	1-2-1	
تفاعل حمض مع الماء واستغلاله. $pK_A = -\log K_A$.	0,25 0,25	$R-NH_2$ النوع المهيمن: التعليل	1-2-2	
-استغلال مخططات هيمنة وتوزيع الأنواع الحمضية والقاعدية في محلول.	0,25 0,5	pH =10,2 التعليل	1-2-3	
كتابة معادلة التفاعل الحاصل أثناء المعايرة (باستعمال سهم واحد).	0,5	معادلة التفاعل	2-1	لِيزَء
ر	0,25 0,25	الطريقة $ m V_{AE} = 20mL$	2-2	2 5
-إنشاء الجدول الوصفي لتقدم التفاعل واستغلاله حساب التقدم النهائي لتفاعل حمض مع الماء انطلاقا من معرفة تركيز و pH محلول هذا الحمض، ومقارنته مع التقدم الأقصى.	0,5 0,25	$\mathbf{x}_{\mathrm{f}} = \mathbf{C}_{\mathrm{A}} \mathbf{V}_{\mathrm{A}} - (\mathbf{V}_{\mathrm{A}} + \mathbf{V}_{\mathrm{B}}).10^{-\mathrm{pH}}$ التحقق	2-3	
-تعريف نسبة التقدم النهائي لتفاعل وتحديدها انطلاقا من معطيات تجريبية.	0,75	. إذن التفاعل كلي $ au \simeq 100\%$	2-4	

الصفحة 2 RR 28

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم التجريبية مسلك العلوم الفيزيائية

تمرین 2 (2,5 نقط)			
مرجع السؤال في الإطار المرجعي	سلم التنقيط	عناصر الإجابة	السوال
-تعريف الموجة المتوالية.	0,25	التعريف	1
-تعريف الموجة الطولية والموجة المستعرضة. -معرفة خاصية موجة محيدة. -معرفة الطبيعة الموجية للضوء من خلال ظاهرة الحيود.	4x0,25	ا- خطأ ؛ ب-خطأ ج-صحيح ؛ د-خطأ	2
-استغلال وثائق تجريبية ومعطيات لتحديد: التأخر الزمني .	0,5	$\tau = 2 \text{ms}$	3
-استغلال العلاقة بين التأخر الزمني والمسافة وسرعة الانتشار .	0,5 0,25	$\ell = \frac{d - \tau \cdot v}{2}$ $\ell = 1,085 \mathrm{m}$	4

تمرین 3 (2 نقط)				
مرجع السؤال في الإطار المرجعي	سلم التنقيط	عناصر الإجابة	السوال	
معرفة مدلول الرمز ${}^{A}_{Z}X$ وإعطاء تركيب النواة التي يمثلها	0,25	طراز eta^- النعليل	1-1	
تعرُف نظائر عنصر كيميائي. -استغلال المخطط (N,Z) . -معرفة واستغلالقانوني الانحفاظ. -كتابة المعادلات النووية بتطبيق قانوني الانحفاظ. -التعرُف على طراز النفتت النووي انطلاقا من معادلة نووية.	0,25	$^{208}_{82}\mathrm{Pb}$	1-2	
-كتابة المعادلات النووية بتطبيق قانوني الانحفاظ.	0,25	معادلة التفتت	2-1	
حساب الطاقة المحررة (الناتجة) من طرف تفاعل نووي: $\mathrm{E}_{\mathrm{lib\acute{e}r\acute{e}e}} = \Delta \mathrm{E} $	0,25 0,25	الطريقة $ m E_{libérée} = \Delta E pprox 6,21~MeV$	2-2	
معرفة واستغلال قانون النتاقص الإشعاعي واستثمار المنحنى الذي يوافقه. الذي يوافقه $t_{_{1}}$ وعمر النصف $t_{_{2}}$. استغلال العلاقات بين τ و λ و λ و λ .	0,5 0,25	البرهنة $t_{1/2} \simeq 60,5 \; \mathrm{min}$	2-3	

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم التجريبية مسلك العلوم الفيزيائية

تمرین 4 (3,5 نقط)				
مرجع السؤال في الإطار المرجعي	سلم التنقيط	عناصر الإجابة	السؤال	
باثبات المعادلة التفاضلية والتحقق من حلها عندما يكون ثنائي القطب RC خاضعا لرتبة توتر. معرفة واستغلال العلاقة $\frac{\mathrm{d}q}{\mathrm{d}t}$ $= \frac{\mathrm{d}q}{\mathrm{d}t}$ الاصطلاح مستقبل. $q = \mathrm{C.u}$.	0,5	البرهنة	1-1	
تعرُف وتمثيل منحنيات تغير التوتر بين مربطي المكثف والمقادير المرتبطة به بدلالة الزمن واستغلالها. معرفة أن التوتر بين مربطي المكثف دالة زمنية متصلة وأن شدة التيار دالة غير متصلة عند t=0. استغلال وثائق تجريبية لتعرُف التوترات الملاحظة.	0,25	E=5 V	1-2-1	
- معرفة واستغلال تعبير ثابتة الزمن. - استغلال وثائق تجريبية لـتعيين ثابتة الزمن .	0,75	التحقق	1-2-2	
-معرفة أن التوتر بين مربطي المكثف دالة زمنية متصلة وأن شدة التيار دالة غير متصلة عند t=0. معرفة أن الوشيعة تؤخر إقامة وانعدام التيار الكهربائي، وأن شدته دالة زمنية متصلة وأن التوتر دالة غير متصلة عند t=0.	0,25	$\mathbf{u}_{\mathbf{b}}(0^{+}) = -5\mathrm{V}$	2-1-1	
حمثيل التوترين u_R و u_L والمصلاح مستقبل. $u=r.i+L.di/dt$ تعبير التوتر $u=r.i+L.di/dt$ بالنسبة للوشيعة في الاصطلاح مستقبل. واثبات المعادلة التفاضلية للتوتر بين مربطي المكثف أو الشحنة $u=q(t)$ في حالة الخمود.	0,5 0,25	الطريقة المعادلة التفاضلية	2-1-2	
-معرفة واستغلال تعبير الطاقة الكهربائية المخزونة في مكثف.	0,5	$E_{t} = \frac{1}{2} (Cu_{C}^{2}(t) + \frac{L}{R^{2}} u_{R}^{2}(t))$	2-2	
-معرفة واستغلال تعبير الطاقة المغنطيسية المخزونة في وشيعةمعرفة واستغلال تعبير الطاقة الكلية للدارة.	0,5	التحقق	2-3	

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم التجريبية مسلك العلوم الفيزيائية

تمرین 5 (5 نقط)				
مرجع السؤال في الإطار المرجعي	سلم التنقيط	عناصر الإجابة	السوال	
- تطبيق القانون الثاني لنيونن لإثبات المعادلة التفاضلية لحركة مركز قصور جسم صلب على مستوى أفقي أو مائل وتحديد المقادير التحريكية والحركية المميزة للحركة.	0,5	البر هنة	1-1	
- استغلال مخطط السرعة ${ m v}_{ m G}(t)$.	0,5	$a_{x1} \simeq 0,64 \text{m.s}^{-2}$	1-2-1	
- معرفة واستغلال مميزات الحركة المستقيمية المتغيرة بانتظام ومعادلاتها الزمنية.	0,5	$f \simeq 0,28 \mathrm{N}$	1-2-2	
	0,75	التحقق	1-3	
- تطبيق القانون الثاني لنيوتن على قذيفة في مجال الثقالة	2x0,5	المعادلتين الزمنيتين	2-1	
- تعييق العانون العالي شيوس على تديعة في تعبق المعادة المنتظم:	0,5	البر هنة	2-2	
 * لإثبات المعادلات التفاضلية للحركة؛ *لاستنتاج المعادلات الزمنية للحركة واستغلالها؛ 	0,5	التحقق	2-3-1	
*لإيجاد معادلة المسار، وتعبيري قمة المسار والمدى واستغلالها.	0,5 0,25	الطريقة $v_N \simeq 3,03 \text{m.s}^{-1}$	2-3-2	