

التمرين 1: الكيمياء (7 نقط)						
مرجع الأسئلة في الإطار المرجعي	سلم التنقيط	عناصر الإجابة	السؤال			
- كتابة المعادلة المنمذجة للتحول حمض - قاعدة وتعرف المزدوجتين المتدخلتين في	0,25	معادلة تفاعل	1-1			
التفاعل. - حساب التقدم النهائي لتفاعل حمض مع الماء	0,25	بالتفاعل محدود $ au \simeq 3,98\%$	1-2	-		
انطلاقا من معرفة تركيز و pH محلول هذا الحمض، ومقارنته مع التقدم الأقصى. - تعريف نسبة التقدم النهائي لتفاعل وتحديدها	0,5 0,25	الطريقة $pK_A \simeq 4.8$	1-3			
انطلاقا من معطيات تجريبية.	0,25	معادلة تفاعل المعايرة.(بسهم واحد)	2-1			
- كتابة تعبير ثابتة الحمضية K_A الموافقة لمعادلة تفاعل حمض مع الماء واستغلاله.	0,25 0,25	الطريقة التحقق	/2-2-1 _j	1 %		
- معرفة ${\rm pK}_{\rm A}=-\log {\rm K}_{\rm A}$ - كتابة معادلة التفاعل الحاصل أثناء المعايرة (باستعمال سهم و احد) تحديد ثابتة التوازن المقرونة بالتفاعل حمض قاعدة بواسطة	0,5 0,25 0,25	الطريقة $ au\simeq 1$ النفاعل كلى	ب-	آنجز		
ثابتتي الحمضية للمزدوجتين المتواجدتين معا.	0,25	C_{A} التحقق من قيمة	2-2-2	-		
- معرفة أن نسبة التقدم الهائي لتحول معين تتعلق بثابتة التوازن وبالحالة البدئية للمجموعة	0,25 0,25	الطريقة، Ve = 30mL	2-2-3			
- استغلال منحنى أو نتائج المعايرة - معلمة التكافؤ خلال معايرة حمض. قاعدة واستغلاله. - تعليل اختيار الكاشف الملون الملائم لمعلمة التكافؤ.	0,25 0,25	احمر الكريزول، اللون الأصفر	2-2-4			
- استغلال منحنيات تطور كمية المادة لنوع كيميائي أو تركيزه أو تقدم التفاعل، أو موصليته، أو مواصلته، أو ضغط غاز ،أو حجمه. - معرفة تعبير السرعة الحجمية للتفاعل.	0,25 0,25	نصفا معادلة التفاعل أكسدة اختزال لتفكك ${ m H}_2{ m O}_2$	1			
	0,25	$x_{\text{max}} = 6.10^{-4} \text{mol}$	2			
- معرف تحبير السرعة الحجمية التفاعل مبيانيا. - تحديد قيمة السرعة الحجمية للتفاعل مبيانيا.	0,5	الطريقة	3	2		
- تعریف زمن نصف التفاعل .t تحدید زمن نصف التفاعل مبیانیا أو باستثمار نتائج تجریبیة.	0,5 0,25	$v(t) = \frac{1}{V_0} \cdot \frac{V - V_0}{R.T} \cdot \frac{dP_{O_2}}{dt}$ $v(t=10min) = 2,15.10^{-3} mol.L^{-1}.min^{-1}$	4	الجزع		
	0,5 0,25	الطريقة t _{1/2} = 9min	5			

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب)

التمرين2: الموجات + التحولات النووية (4 نقط)				
مرجع الأسئلة في الإطار المرجعي	سلم التنقيط	عناصر الإجابة	السوال	
- استغلال وثائق تجريبية ومعطيات لتحديد مسافة أو طول الست	0,5	$\lambda_1 = 1$ cm	1-1	
الموجة؛ - معرفة واستغلال العلاقة $\lambda = v.T$.	0,25	التحقق	1-2	
- معرفة شرط حدوث ظاهرة الحيود: بعد الفتحة أصغر أو يساوي طول الموجة .	0,25	موجات دائرية	2	1: الموجات
معرَّفة واستغلال العلاقة $\lambda = { m v.T}$.	0,25	ظاهرة الحيود الطريقة؛		년 :1
- تعریف وسط مبدد.	0,25	$V_2 = 0.24 \text{m.s}^{-1}$	3-1	الذع
	0,25	تتعلق السرعة بالتردد	3-2	
	0,25	الوسط مبدد		
معرفة واستغلال قانوني الانحفاظ. - تعريف التفتتات النووية eta^- و eta^+ و $lpha$ و الانبعاث γ	0,25	معادلة التقتت $lpha$	1	لنووية
- كتابة المعادلات النووية بتطبيق قانوني الانحفاظ.	0,25	$ \Delta E $ =5,5703 MeV	2	۲. ت
- التعرف على طراز التقتت النووي انطلاقا من معادلة نووية. - حساب الطاقة المحررة (الناتجة) من طرف تفاعل نووي:	0,5	$a_0 = 8,2316.10^{10} Bq$	3-1	2: التحولات النووية
$ \Delta E_{ ext{libirde}} $. $ \Delta E_{ ext{libirde}} $. $ \Delta E_{ ext{libirde}} $. معرفة و استغلال قانون التناقص الإشعاعي	0,5	$\Delta t = 45,22an$	3-2	الجزع

الصفحة 3 RR 30

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب)

التمرين 3: الكهرباء (4 نقط)					
مرجع الأسئلة في الإطار المرجعي	سلم التنقيط	عناصر الإجابة	السوال		
معرفة واستغلال العلاقة $\dfrac{\mathrm{d}q}{\mathrm{d}t}$ بالنسبة لمكثف في الاصطلاح مستقبل. معرفة واستغلال العلاقة $q=C.u$. $-$ معرفة واستغلال العلاقة $-$. $-$ تحديد سعة مكثف مبيانيا أو حسابيا.	0,25	$\mathbf{u}_{\mathrm{C}} = \mathbf{U}_{0} + \frac{\mathbf{I.t}}{\mathbf{C}}$	1-1		
	0,25 0,25	$U_0 = 4V$ $C = 4\mu F$	1-2		
ـ معرَّفة واستغلال تعبير الطَّاقة الكهرباءية المخزونة في مكثف	0,25	$Ee(t_1) = 0,39mJ$	1-3		
معلق. - إثبات المعادلة التفاضلية والتحقق من حلها عندما يكون ثنائي القطب RL خاضعا لرتبة توتر. - معرفة واستغلال تعبير التوتر u _{L=r.i+L.di/dt} بالنسبة لوشيعة في الاصطلاح مستقبل. - تحديد تعبير شدة التيار i (الاستجابة) عند خضوع ثنائي	0,25 0,25	$\beta = \frac{E.R}{L}$ $\tau = \frac{L}{R+r}$	2-1		
القطب RL لرتبة توتر وأستنتاج تعبير التوتر بين مربطي وشيعة وبين مربطي موصل أومي.	0,5	$A = \frac{E.R}{R + r}$	2-2		
ـ معرفة واستغلال تعبير ثابتة الزمن. ـ تعرف ظاهرة الرنين الكهربائي ومميزاتها.	0,5	الطريقة	2-3		
معرفة واستغلال تعبير الممانعة $Z=rac{U}{I}$ للدارة .	0,25 0,25	الطريقة الطريقة	2-4		
ـ استغلال وثائق تجريبية لتحديد عرض المنطقة الممررة	0,25	الطريقة	3-1		
$Q=rac{N_{\circ}}{\Delta N}$ عمر فة واستغلال تعبير معامل الجودة - $Q=rac{N_{\circ}}{\Delta N}$	0,25	الطريقة	3-2		
	0,25 0,25	$Q \simeq 1,3$ $\Delta N \simeq 620 Hz$	3-3		

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب)

التمرين 4: الميكانيك (5 نقط)						
مرجع الأسئلة في الإطار المرجعي	سلم التنقيط	عناصر الإجابة	السوال			
- معرفة واستغلال النموذجين التاليين لقوة الاحتكاك في الموائع:	0,25	F⟩P	1-1			
. \vec{F} =- $kv^2\vec{i}$ \vec{F} =- $kv\vec{i}$	0,25	الحركة في المنحى الموجب	1-1			
- تطبيق القانون الثاني لنيوتن للتوصل إلى المعادلة التفاضلية لحركة	0,5	الطريقة	1-2			
مركز قصور جسم صلب في سقوط رأسي باحتكاك.	0,25	$V_{\ell} = 4,88 \text{m.s}^{-1}$		1 ,		
. استغلال المنحنى $ { m v_G}_{={ m f}({ m t})}$ لتحديد السرعة الحدية	0,25	~	1-3	الجزء		
- تطبيق القانون الثاني لنيوتن لإثبات المعادلة التفاضلية لحركة		$\eta \simeq 6,13.10^{-2}(S.I)$		F		
مركز قصور جسم صلب في سقوط رأسي حر، وإيجاد حلها.	0,5	$v = 2.8 \text{m.s}^{-1}$	1-4			
- معرفة واستغلال مميزات الحركة المستقيمية المتغيرة بانتظام	0,5	$h_m = 40 cm$	2			
ومعادلاتها الزمنية.		m roun				
- تطبيق العلاقة الأساسية للديناميك في حالة الدوران لإثبات الما المات التعالى الماسية الم	0,5	\ddot{a} m.g.L $\alpha = 0$	1			
المعادلة التفاضلية لحركة النواس الوازن في حالة الاحتكاكات المهملة والتنبذبات الصغيرة.		$\ddot{\theta} + \frac{\text{m.g.L}}{J_{\Delta}}.\theta = 0$	1			
- البات تعبير الدور الخاص للنواس الوازن.		الطريقة				
- معرفة واستغلال تعبير الدور الخاص والتردد الخاص للنواس	0,25					
الوازن في حالة التنبذبات الصغيرة.	0,25	$T_0 = 2\pi \sqrt{\frac{J_{\Delta}}{m.g.L}}$	2			
- استغلال المخططات: $\theta(t)$ و $\dot{\theta}(t)$ و $\dot{\theta}(t)$ لتحديد المقادير المميزة لحركة النواس الوازن في حالة التذبذبات الصغيرة.		√ m.g.L		2		
المسيرة تعرف التواري في كانه التبايات التصعيرة. - استغلال تعبير طاقة الوضع الثقالية والطاقة الحركية لتحديد الطاقة	0.25	$J_{\Lambda} = 7.84.10^{-3} \text{kg.m}^2$	3	P		
الميكانيكية للنواس الوازن في حالة التذبذبات الصغيرة.	0,25	$J_{\Delta} = 7.64.10$ Kg.III	3	Ė.		
	0.25	$v_{G} = 1,178 \text{m.s}^{-1}$				
	0,25 0,25		4			
	0,45	$a_G = 2,775 \text{m.s}^{-2}$]		
	0,5	$Ec = \frac{1}{2} \text{ m.g. } L(\theta_m^2 - \theta^2)$				
	0,25	<u> </u>	5			
	0,20	Ec = 0,022J				