

Q01) Diagramme « Bête-à-cornes »

Q02) Diagramme des interactions « Pieuvre » et tableau des fonctions de service.

Tableau des fonctions de service

Fonction	Énoncé des fonctions
FP	Découper les blocs cubiques de marbre en plaques de même épaisseur.
Fc1	Être facile à utiliser.
F _{C2}	Être alimentée en énergie électrique
Fc3	Lubrifier et refroidir les scies par jet d'eau.
Fc4	Respecter les normes de sécurité.
Fc5	Être compatible avec le réseau local de supervision.
Fc6	Résister à la poussière et à l'humidité.
F _{C7}	Être adaptée aux dimensions du bloc de marbre.

الصفحة 3

RR - 46

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2025 – عناصر الإجابة - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

Q03) Calcul de r1

1 pt = 0.75 (formule) + 0.25 (AN)

$$r_1 = \frac{Z1}{Z2} = \frac{10}{40} = \frac{1}{4} = 0.25$$

Q04) Calcul de r2

1 pt = 0.75 + 0.25

$$r_2 = \frac{Z3}{Z4} = \frac{2}{60} = 0.033$$

Q05) Calcul de Z6

1 pt = 0.75 + 0.25

On a:
$$r_3 = \frac{Z5}{Z6}$$
 alors $Z_6 = \frac{Z5}{r_3} = \frac{12}{0.25}$ donc $Z_6 = 48$ dents

Q06) Déduction de rg

1 pt = 0.75 + 0.25

$$r_g = r_1 \cdot r_2 \cdot r_3$$
; $r_g = 0.25 \cdot 0.033 \cdot 0.25 = 0.002$

Q07) Calcul de Nv

1 pt = 0.75 + 0.25

$$r_g = \frac{Nv}{Nm}$$
; $N_v = N_m$. $r_g = 1440$. 0,002 = 2,88 tr/min

Q08) Calcul de Vd

2 pts = 1.5 + 0.5

$$V_d = p.n.Nv$$
; $V_d = 2.1.2,88 = 5,76$ mm/min

Q09) Détermination de t_d en min puis en heures

$$V_d = \frac{h}{td} \quad donc \quad t_d = \frac{h}{Vd}$$

1,5 p

$$t_d = \frac{2.10^3}{5,76} = 347,222 \text{ min}$$

0,25 p

$$t_d = \frac{347,222}{60} = 5,787 \text{ heures ou 5 heures 47 minutes}$$

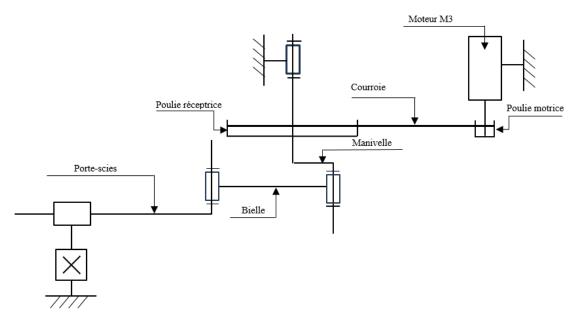
),25 p

Q10) Solution pour que les glissières se déplacent dans le même sens.

1 pt

On présente ici deux solutions possibles.

Solution 1 : Pour l'un des deux renvois d'angle, mettre le pignon conique (5) de l'autre côté de la roue conique (6).


Solution 2 : Les vis verticales doivent avoir des sens d'hélices de filetage opposés l'un par rapport à l'autre.

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2025 – عناصر الإجابة - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

Q11) Schéma cinématique

 $2,25 pts = 3 \times 0,75$

Q12) Calcul de Ns

1 pt = 0.75 + 0.25

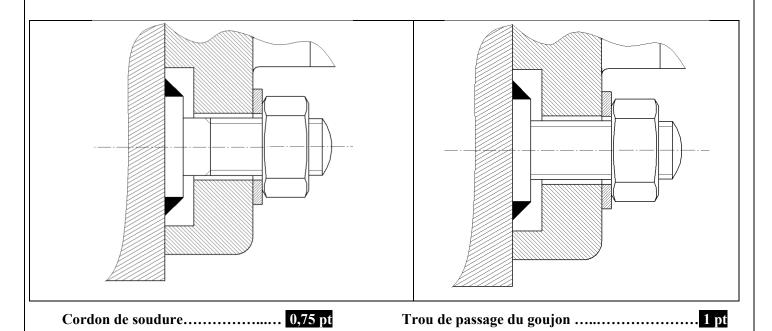
Ns = Nm.
$$\frac{D1}{D2}$$
 = 1400. $\frac{150}{2500}$ = 84 tr/min

Rondelle 1 pt

Goujon 1 pt

Q13) Déduction de fr la fréquence du mouvement de translation alternative

1 pt = 0.75 + 0.25


Pour un système bielle-manivelle, fr = vitesse de rotation de la manivelle = Ns = 84 cycles/min.

Q14) Course maximale C du porte-scies lors de son mouvement de coupe.

1 pt = 0.75 + 0.25

La course maximale C représente deux fois le rayon de la manivelle, C=2.R (avec R: Rayon de la manivelle) donc C=2.150=300 mm.

Q15) Étude graphique : on présente ci-dessous deux solutions possibles.

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2025 – عناصر الإجابة - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

Q16) Couplage des enroulements du moteur asynchrone M3

1.5 pt = 0.75 + 0.75

Le couplage des enroulements doit être en étoile

Justification : la plaque signalétique indique qu'un enroulement supporte 220 V, alors que le réseau a une tension composée (entre phases) de 380 V.

Q17) Puissance absorbée et courant dans un enroulement du moteur.

$$Pa = \frac{Pu}{\eta}$$
 ; $Pa = 103,45 \text{ kW}$
 $I_Y = \frac{Pa}{\sqrt{3}.U.\cos\phi}$; $I_Y = 180,66 \text{ A}$

1 pt = 0.5 + 0.5

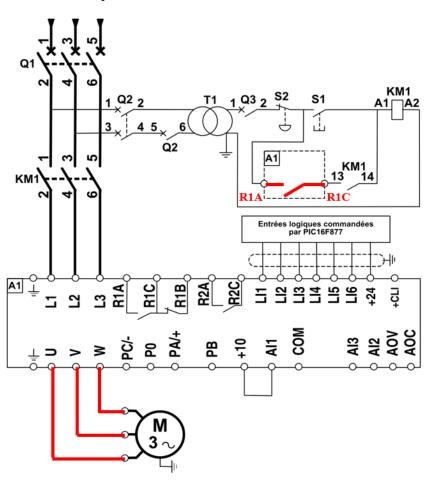
1 pt = 0.5 + 0.

Q18) Glissement g du moteur asynchrone et couple C_u en charge nominale.

2 pts = 0.5 + 0.5 + 1

$$N_{S} = \frac{60 \cdot f}{p} = 1500 \text{ tr/min}$$

$$g = \frac{N_{S} - N_{T}}{N_{S}} ; \quad g = \frac{1500 - 1440}{1500} = 4 \%$$
et $Cu = \frac{Pu}{Or} ; \quad Cu = \frac{90000}{1440 \ 2\pi} \cdot 60 = 596,83 \text{ Nm}$


Q19) Vitesse de synchronisme et vitesse de rotation pour $f_1 = 20$ Hz et $g_1 = 4\%$.

2 pts = 2x(0.5 + 0.5)

$$N_{S1} = \frac{60 \cdot f_1}{p} = 600 \text{ tr/min et } N_{R1} = Ns_1 \cdot (1-g_1) = 576 \text{ tr/min}$$

Q20) Circuit de commande et de puissance

2 pts = 1 + 1

فحة	الص
abla	6
10	\setminus $ $

RR - 46

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2025 – كناصر الإجابة - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

Q21) Désignation et fonctions des éléments

 $2 pts = 4 \times 0.5$

Élément	Désignation et fonction
S1	Bouton poussoir de mise en marche du moteur M3
S2	Bouton poussoir d'arrêt du moteur M3
Q3	Disjoncteur de protection du circuit de commande
Contact (13, 14) de	Contact de maintien de l'auto-alimentation du contacteur KM1
KM1	

Q22) États logiques des entrées LI4 et LI3

2 pts = 1 + 1

Fréquence f_i en Hz (Vitesse de rotation N_i en tr/min)	$f_2 = 10 \text{ Hz } (N_2 = 300)$		$f_3 = 15 \text{ Hz} (N_3 = 450)$		$f_4 = 20 \text{ Hz } (N_4 = 600)$	
États des entrées logiques	LI4	LI3	LI4	LI3	LI4	LI3
LI4 et LI3	0	1	1	0	1	1

Q23) Rendement nominal η du transformateur pour $\cos \varphi_2 = 0.8$

2 pts = 1 + 1

$$\eta = \ \frac{\text{S.cos} \ \phi_2}{\text{S.cos} \ \phi_2 + \text{Pertes}} \ \ ; \ \ \eta = \frac{100 \times 0.8}{100 \times 0.8 + 15} \ = 84,21 \ \%$$

Q24) Courant nominal au secondaire du transformateur I_{2N}

1 pt = 0.75 + 0.25

$$S = U_{2N}.I_{2N}$$
 alors $I_{2N} = \frac{S}{U_{2N}}$; $I_{2N} = \frac{100}{24} = 4,16A$

Q25) Pertes Joule P_J à charge nominale et la résistance ramenée au secondaire R_S

2 pts = 2x(0.75 + 0.25)

$$\begin{split} P_T &= P_J + P_f & alors & P_J &= P_T - P_f = 15 - 10,5 = 4,5 \ W \\ P_J &= Rs. (I_{2N})^2 & alors & Rs &= \frac{P_J}{(I_{2N})^2} &= \frac{4,5}{(4,16)^2} = 260 \ m\Omega \end{split}$$

Q26) Réactance de fuite ramenée au secondaire X_S

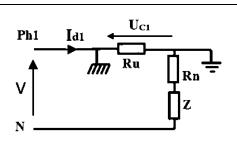
2 pts = 1,25 + 0,75

$$\begin{split} \Delta U_2 &= (R_S.cos\,\phi_2 + X_S.sin\,\phi_2).I_{2N} \;\; donc \;\; X_S = \quad ; \;\; X_S = \quad \frac{\frac{\Delta U_2}{I_{2N}} - R_S\cdot cos\,\phi_2}{sin\,\phi_2} \\ X_S &= \quad \frac{\frac{0.95}{4.16} - 0.26\cdot0.8}{0.6} \;\; = 33.94\; m\Omega \end{split}$$

Q27) Nomination IT

1.5 pt = 0.75 + 0.75

I : Côté transformateur : le neutre est isolé de la terre.


T : Côté charge : les masses des récepteurs sont reliées à une prise de terre.

الصفحة 7 RR - 46

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2025 – عناصر الإجابة - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

Q28) Schéma équivalent en cas du 1 $^{\rm er}$ défaut et calcul du courant de défaut I_{d1}

2 pts = 1 + (0.75 + 0.25)

$$Courant \ I_{d1}: \\ I_{d1} = \ \frac{V}{Ru + Rn + Z} \quad ; \label{eq:courant}$$

$$I_{d1} = \frac{220}{2040} = 107,84 \text{mA}$$

Q29) Tension de contact U_{C1}

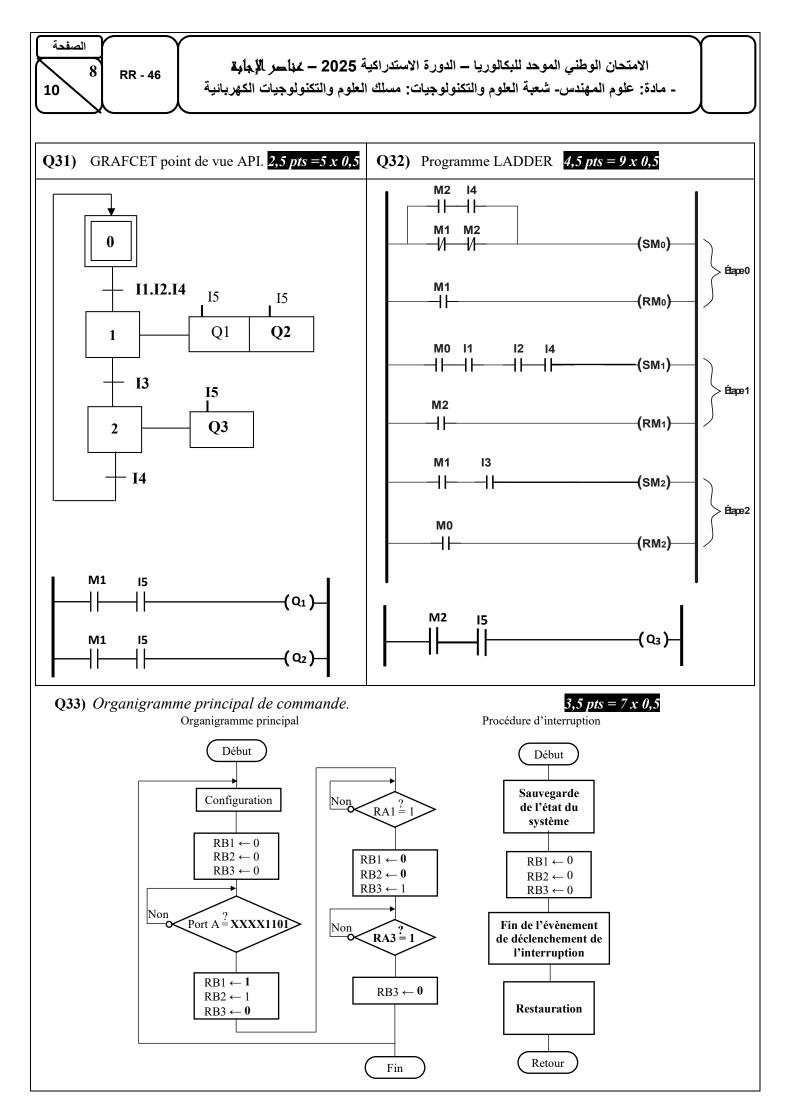
$$2 pts = (0.75 + 0.25) + (0.5 + 0.5)$$

- \checkmark U_{C1} = Ru×I_{d1}; U_{C1} = 20×0,10784 = 2,15 V;
- ✓ La tension de contact ne présente aucun danger ;
- ✓ Celle-ci est inférieure à la tension limite de contact $U_L = 25V$ en milieu humide.

Réponse facultative à ne pas tenir en compte lors de la correction :

L'installation peut continuer à fonctionner, la norme impose la signalisation du premier défaut et la détection du défaut est réalisée par un CPI.

Q30) Courant de défaut I_{d2} , tension de contact U_{C2} et conclure


2 pts = 0.75 + 0.75 + 0.5

$$I_{d2} = \ \frac{0.8xU}{Rph1 + Rpe1 + Rpe2 + Rph2}$$

$$I_{d2}\!=\!\begin{array}{cc} 0.8x380 \\ \hline 0.2\!+\!0.2\!+\!0.2\!+\!0.2 \end{array} = 380~A$$

et
$$U_{C2} = R_{pe2} \times I_{d2}$$
 ; $U_{C2} = 76 \text{ V}$.

On est en présence d'un fort courant de court-circuit, la tension de contact est dangereuse, il faut effectuer une coupure immédiate par un disjoncteur ou par fusible.

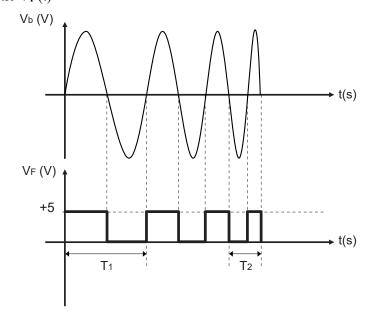
RR - 46

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2025 – عناصر الإجابة - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربانية

Q34) Nombre de dents n de la roue dentée du capteur

1 pt

D'après la caractéristique du capteur : fréquence f(Hz) en fonction de la vitesse du moteur N(tr/min), on a f=1,5.N or $f=\frac{n.N}{60}$ donc n=1,5.60=90 dents


Q35) Nom et le rôle du montage réalisé autour de l'amplificateur AO1

0.5 pt = 0.25 + 0.25

Montage suiveur, permet l'adaptation d'impédance.

Q36) Forme de la tension de sortie $V_F(t)$

1 pt = 0.75 + 0.25

Q37) Impédance équivalente Zeq

0,5 pt

$$\underline{Z}$$
eq = $R_2//\underline{Z}$ c = $\frac{R_2.\underline{Z}_C}{R_2+Z_C}$ alors \underline{Z} eq = $\frac{R_2}{1+jR_2C\omega}$

Q38) Fonction de transfert et expressions de T_0 et f_0

2 pts = 1 + 0.5 + 0.5

$$\underline{\mathbf{T}}(\mathbf{j}\omega) = \frac{-R_2}{R_1(1+jR_2C\omega)} = -\frac{\frac{R_2}{R_1}}{1+jR_2C.2\pi.f} = \frac{T_0}{1+j\frac{f}{f_0}} \quad \text{; avec} \quad T_0 = -\frac{R_2}{R_1} \quad \text{et} \quad f_0 = \frac{1}{2\pi R_2C}$$

Q39) Type et Nature du filtre réalisé

1 pt = 0.5 + 0.5

Nature du filtre		Type de filtre		
☐ Filtre Passif	▼ Filtre Actif	☐ Passe Bande	⊠ Passe Bas	☐ Passe Haut

Q40) Calcul de R₂

1 pt = 0.5 + 0.25 + 0.25

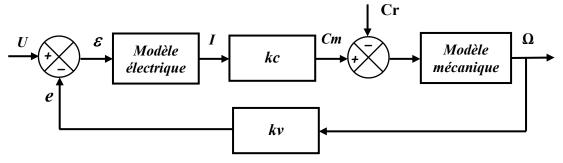
$$f_0 = \frac{1}{2\pi R_2 C} = 2250 \text{ Hz}$$
 alors $R_2 = \frac{1}{2\pi f_0 C}$; $R_2 = 707,35 \Omega$.
Et $T_0 = -\frac{R_2}{R_1} = -2,021$.

Q41) Équation différentielle électrique de l'induit (ensemble électrique)

$$u(t) = Ri(t) + L\frac{di(t)}{dt} + e(t) donc \frac{L}{R}\frac{di(t)}{dt} + i(t) = \frac{1}{R}(u(t)-e(t)) = \tau \frac{di(t)}{dt} + i(t) = A(u(t)-e(t))$$

Avec $\tau = \frac{L}{R}$ et $A = \frac{1}{R}$

$$\tau = 0,05s$$
 et $A = 10 \Omega^{-1}$.


0.5 pt

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2025 – عناصر الإجابة - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربانية

1,5 pt = 0,5 + 0,5 + 0,5

Q43) Calcul de Vr

1,5 pt = 1 + 0,25 + 0,25

Selon le schéma bloc,
$$Vr = \Omega \cdot \frac{30}{\pi} \cdot 1.5 \cdot \frac{1}{225}$$
 ; $Vr = \frac{1}{5\pi} \Omega$.

Vitesse Ω en rad/s	Vitesse N en tr/min	Vitesse N en tr/min Fréquence en Hz	
157	1500	2250	10
80	764	1146	5,1

Q44) Exploitation du graphe de vitesse $\Omega(t)$.

$1,5 pt = 4 \times 0,25 + 0,5$

Vitesse en régime permanent Ω∞	Constante du temps du système τ _F	Temps de réponse tr à 5%	Erreur du système ε= Vc - Vr	Conclusion sur le rôle du correcteur PI
Ω_{∞} = 80 rad/s	$ au_F pprox 0,2 s$	$tr = 3\tau_F = 0.6s$	$\varepsilon = Vc - Vr$ $\varepsilon = 5,1 - 5,1 = 0 \text{ V}$	Le correcteur PI annule l'erreur statique

Q45) Caractéristiques du réseau local.

$2,5 \ pts = 5 \ x \ 0,5$

Topologie du réseau	Adresse IP	Classe	Masque du sous réseau	Adresse du réseau	Nombre de machines adressables du réseau
Etoile	192.168.75.8	C	255.255.255.0	192.168.75.0	$2^8 - 2 = 254$

Q46) Division du réseau en sous réseaux.

 $1.5 pt = 3 \times 0.5$

Puisque on a emprunté les deux premiers bits dans le 4ème octet, alors celui-là sera :

 $(11000000)_2 = (192)_{10}$ et les 3 autres octets prennent leurs valeurs par défaut (255).

Nouveau masque de sous réseau créé	Adresses IP des m	Machines qui appartiennent au sous réseau d'adresse IP : 192.168.75.64	
	Adresse de l'API	192.168.75.88	X
255,255,255,192	Adresse de l'ordinateur 1	192.168.75.125	X
255.255.255.192	Adresse de l'ordinateur 2	192.168.75.129	
	Adresse de l'ordinateur 3	192.168.75.194	

NB- On effectue l'opération ET logique bit à bit entre l'adresse IP machine et le masque de sous réseau (le résultat en cas de confirmation est 192.168.75.64).