

جاهمة سيدي محمد بين عبد الليد كلية الطيب و الحبيدلية فياس

Fès.

Concours d'accès à la faculté de Médecine

Année universitaire: 2012-2013

Durée: 2h

Remarques Importantes

R1-Le concours est composé de quatre épreuves de 30 minutes chacune avec le même coefficient (1).

R2- Pour chaque question, cinq réponses (A-B-C-D-E) sont proposées, dont une seule est correcte.

R3- Vous disposez d'une seule grille-réponse.

R4- Répondre en cochant la réponse correcte sur la grille le

Description des épreuves :

Epreuve 1 : Mathématiques : Questions de 1 à 10

Epreuve 2 : Physique : Questions de 11 à 20

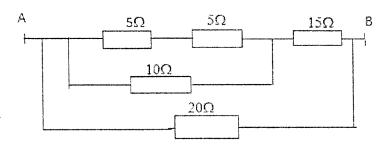
Epreuve 3 : Chimie : Questions de 21 à 30

Epreuve 4 : Sciences naturelles : Questions de 31 à 40.

Mes W

مادة الرياضيات

To any the second secon		
$(A): [1, +\infty[$		السوال 1
(B): R	مجموعة تعريف الدالة العدية م للمتغير الحقيقي	
$(C):]-\infty, -1[\cup]1, +\infty[$	x المعرفة ب : x	
(D):]-∞,-1[(x-1)	
$(E):]1, +\infty[$	$f(x) = \ln\left(\frac{x-1}{x+1}\right)$	
	هي :	
(A): $g'(x) = \frac{1}{3\sqrt[3]{e^{2x}}}$	الدائة المشتقة للدائة:	السوال 2
3 46	$g:\mathbb{R} o \mathbb{R}$	
(B): $g'(x) = \frac{1}{3\sqrt[3]{e^{-x}}}$ (C): $g'(x) = \frac{e^{-x}}{3}$	$x \mapsto \ln\left(\sqrt[3]{e^x}\right)$	
3Ne	\mathbb{R} المعرفة على \mathbb{R} ب:	
$(C): g'(x) = \frac{e}{3}$	هي الدالية و المعرف على ١٨ ب.	
$(\mathbf{p}) \cdot \mathbf{q}'(\mathbf{r}) = 1$		
$(D): g'(x) = \frac{1}{3}$		e le partie de la company
(E): $g'(x) = \frac{1}{3e^x}$		
3 e*		
$(\mathbf{A}): I = e^{\pi}$	قيمة التكامل:	2 11: 11
(B): $I = e^{\pi} - 1$	قيمة المتقامل :	السوال 3
(C): $I = e^{\pi} + 1$	$I = \int_0^{\pi} 2e^x \sin(x) dx$	
(D): $I = 0$ (E): $I = 1 - e^{\pi}$	٥٠ / ٥٠	
		,
(A): $y(x) = e^{mx} \left(a \cos(mx) + b \sin(mx) \right)$	ليكن m عددا حقيقيا غير منعدم .	السوال 4
(B): $y(x) = ae^{mx} + be^{-mx}$	الحل العام للمعادلة التفاضلية:	
$(C): y(x) = ae^{mx} + b$	$y'' - 2my' + 2m^2y = 0$	
$(\mathbf{D}): y(x) = (ax+b)e^{mx}$		
(E): $y(x) = a\cos(mx) + b\sin(mx)$	هو الدوال روالمعرفة على ١٦ ب:	
حيث a و b عددان حقيقيان .		
(A): قطعة	تقاطع الفلكة :	
نصف دائرة: (B)	$S(\Omega(1,1,1), R=1)$	المسؤال 5
نقطة : (C) مجموعة فارغة : (D)	و المستوى:	
مجموعه (E) : دائرة	و اعتصوی .	
	$(P): x - y + z + \sqrt{3} - 1 = 0$	
	هو:	


. 24	Aciona S 20 le divisa II . II . II . II . I in it in it	C 11: 11
(A): $p = \frac{24}{49}$	نعتبر ثلاثة صناديق U_1 و U_2 و U_3 محتوية على 20 كرة موزعة U_3	السوال 6
$(\mathbf{R}) \cdot \mathbf{n} = 4$	كما يلي :	
(B): $p = \frac{4}{21}$	$oxed{U_3} oxed{U_2} oxed{U_1}$ الصندوق	
(C): $p = \frac{7}{18}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
18	البيضاء	
$(D): p = \frac{8}{20}$		
20	الخضراء الخضراء الخضراء الخضراء الخضراء الختار عشوائيا صندوقا ثم نسحب منه كرة واحدة .	
(E): $p = \frac{4}{7}$	علما أن الكرة المسحوبة بيضاء فالاحتمال p لكي تكون من	
	الصندوق $U_{\scriptscriptstyle \parallel}$ هو :	
Sim		
(A) : $e^{-\frac{5i\pi}{6}}$	الكتابة الاسية للعدد العقدي:	السوال 7
(B) : $-e^{-\frac{5i\pi}{6}}$	$\sqrt{3}-i$	
1	$\frac{\sqrt{3}-i}{-1+i\sqrt{3}}$	
(C): $2e^{-\frac{5i\pi}{6}}$		
$(\mathbf{D}): e^{\frac{4i\pi}{3}}$		
(E): 2	: هي	
2012		
(A): 2^{2012}	الشكل الجبري للعدد العقدي:	السوال 8
(B): $2^{2012}\cos\left(\frac{3\pi}{4}\right)$	$(-1+i)^{2012}$	
\ ' /	(-1+t)	ļ
$(C): -2^{2012}i\sqrt{2}\cos\left(\frac{3\pi}{4}\right)$		
(D): -2^{1006}	هو:	
(E): -2^{2013}		
(A): $ln(3)$	نهاية المتتالية ذات الحد العام:	السوال 9
(B): -∞	$S_n = \ln\left(\sum_{k=0}^n \frac{e^k}{3^{k+1}}\right)$	
(C): $ln(e)$	$\left(\sum_{k=0}^{n} 3^{k+1}\right)$	
(D): +∞	: په	
$(E): -\ln(3-e)$		
	النهابة / عند العدد [للدالة العدية R للمتغير الحقيقي x	السوال 10
$(\mathbf{A}): l = \frac{1}{e^2}$	المعرفة ب:	ا ادستوان ۱۲
$(\mathbf{B}): l = \frac{1}{e} \qquad \qquad \bullet$	$R(x) = \frac{1}{x-1} \int_{1}^{x} e^{-t^{2}} dt$	
_	$\frac{1}{x-1}\int_{1}^{x}e^{-x}dx$	
غير موجودة : (C)	هي :	
(D): $l = +\infty$ (E): $l = 0$		
(E) · · · - ·		

ž

ì

مادة الفزياء

- 11) يطلق متجول صيحة في اتجاه جبل يبعد عنه بالمسافة Dأعطى قياس المدةالزمنية الفاصلة بين لحظة انطلاق الصوت ولحظة استقبال صدى الصوت القيمة $\Delta t = 4s$
 - احسب المسافة D الفاصلة بين المتجول والجبل؟ نعطى سرعة انتشار الصوت في الهواء V=330m/s
 - D = 1320 m -A
 - D = 330 m -B
 - D = 660 m -C
 - D = 82.5 m -D
 - D = 13.2 Km -E
- 12) تنتشر على حبل مرن موجة جيبية متوالية. عند لحظة t_1 تكون استطالة نقطة M من الحبل قصوى وعند لحظة t_1 تصبح منعدمة بحيث $\Delta t = t_1 t_2 = 0,15$.
 - $\lambda=0.9$ m سرعة انتشار الموجة علما أن طولها هو V
 - V = 1.5 m/s A
 - V=3 m/s -B
 - V = 6 m/s -C
 - V = 0.135 m/s D
 - V = 0.667 m/s E
- (13) تتحول نويدة البلونيوم Po إلى نويدة الرصاص Pb الدرية التالية التالية الدرية التالية الدرية اللونيوم $m(\frac{206}{82}Pb)=206,038$ $m(\alpha)=4,004$ $m(\frac{210}{84}Po)=210,048$ والكتلة المولية للبلونيوم M(Po)=210g/mol و M(Po)=210g/mol و M(Po)=210g/mol و M(Po)=210g/mol و M(Po)=210g/mol
 - أحسب الطاقة ΔE الناتجة عن تفتت 0,420Kg من البلونيوم
 - $\Delta E = 8,96 \ 10^{-13} \, J A$
 - $\Delta E = 35.97 \cdot 10^2 \, J B$
 - $\Delta E = 17,98 \ 10^{-13} \text{ J} \text{C}$
 - $\Delta E = 53,96 \ 10^{10} \, J D$
 - $\Delta E = 10,79 \cdot 10^{11} \, J E$
 - m B ما هي المقاومة المكافئة m Re للمقاومات المركبة على الشكل التالي بين النقطتين m Re

- A- Re= 55Ω
- B- Re= 40Ω
- C- Re= 12.73Ω
- D- Re= 10 Ω
- E- Re= 27,14 Ω

 C_1 =1mF بين مربطي ثنائي القطب مكون من مكثفين مركبين على النوالي سعتهما U=200V و C_2 =3mF و C_2 =3mF

 C_2 ما هما التوترين U_1 بين مربطي C_1 و U_2 بين مربطي

 $U_1 = U_2 = 200V - A$

 $U_2 = 100 \text{V}$ $U_1 = 100 \text{V}$ -B

 $U_2 = 50V$ $U_1 = 150V$ -C

 $U_2 = 150 \text{V}$ و $U_1 = 50 \text{V}$ -D

 $U_2=0V$ $U_1=200V$ -E

16 نركب على التوالي وشيعة معامل تحريضها الداتي 100 100 ومقاومتها مهملة ومكثفا سعته 100 وموصلا أوميا مقاومته 100 فنحصل على ثنائي قطب 100 فطبق بين مربطي ثنائي القطب 100 توترا متناوبا جيبيا دبدبته 100 بحيث يكون توافق في الطور بين التيار الكهربائي والتوتر. ما هي قيمة سعة المكثف 100

C = 50,66 mF - A

 $C = 50,66 \, \mu F - B$

 $C = 5,06 \, \mu F - C$

C = 0.016 F - D

C=159 mF -E

m=500 تنطلق شاحنة كتلتها m=500 بدون سرعة بدئية على طريق مستقيمي وأفقي. نلاحظ أن سرعة الشاحنة تصل الى v=36m0 بعد مدة v=36m0 نصل الى v=36m1 التي قطعتها الشاحنة بعد هده المدة

d=50 m -A

d = 500 m -B

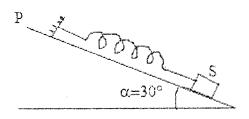
d= 1 Km -C

d= 1,8 Km -D

d = 3.6 Km -E

18) (تابع للسؤال 17) أحسب شدة القوة F التي يطبقها المحرك على الشاحنة علما أنها دات اتجاه مواز للطريق ولها نفس منحى الحركة وأن الاحتكاكات ممثلة بقوة ثابتة اتجاهها مواز للطريق وشدتها f=500N.

F = 550 N - A

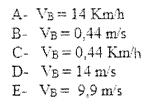

F = 1000 N - B

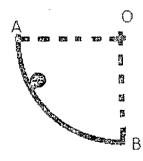
F = 680 N - C

F = 500 N - D

F = 450 N - E

19) نعتبر نابضا كتلته مهملة وصلابته K ثبت أحد طرفيه بحامل ثابت بينما ثبت طرفه الاخر بجسم (S) كتلته m=0.2 لا يمكنه الانزلاق بدون احتكاك على المستوى (S) المائل بزاوية (S) بالنسبة للمستوى الافقي. لتكن (S) المائل النابض عند توازن (S) . نعطي (S) نعطي (S) المائل النابض عند توازن (S) . نعطي (S)




A- K= 0,2 N/m B- K= 0,34 N/m C- K= 34,6 N/m

D- K = 40 N/m

E-K=20 N/m

ينزلق جسم نقطي M على سكة AB لها شكل ربع دائرة شعاعها $_{\rm r=0,010Km}$ ومركزها $_{\rm r=0,010Km}$. is $_{\rm r=9,8~ms^{-2}}$. idd $_{\rm r=0,010Km}$ من $_{\rm r=0,010Km}$ بدئية ونعتبر الاحتكاكات مهملة. $_{\rm r=0,010Km}$ للجسم $_{\rm r=0,010Km}$ عند $_{\rm r=0,010Km}$

مبارة ولوج كلية الطب و الصيدلة بفاس 27 يوليوز 2012 . **QCM**الكيمياء المدة الزمنية 30 دقيقة

لله : بالنسبة لكل سؤال يوجد <u>جواب صحيح واحد</u> من بين الأجوبة الخمسة المقترحة، <u>ضع علامة في خانة</u> ا <u>لجواب</u> بح.	<u>ملاحد</u> الصد

	سؤال 21 -
افيل محلول:	ż kra
حامض	: A 🔲
قاعدي	: B
v	: C
معدني ملحي	: D
· .	· 12 []
	سؤال 22 –
، ورق ال Hq ل:	يستعمل
تحديد ال pH بصفة دقيقة	:A
تحديد ال pH بصفة تقريبية	: B
كشف عدد الأكتونات	: C
التفاعل مع المحلول المعاير به	: D
التفاعل مع المحلول المعاير	: E
	سؤال 23–
لاً ثابتة الحمضية للمزدوجة $(A_{(aq)}^-/A_{(aq)}^-/A_{(aq)}^-)$ هي القاعدة المرافقة للحمض $(AH_{(aq)})$. صيغة ال طول ماني يضم المزدوجة $(AH_{(aq)}/A_{(aq)}^-/A_{(aq)}^-)$ هي :	لتكن _a PH لم
$pH = pK_a + \log ([H_3O^+]_{eq}) / [AH]_{eq})$:A 🗍
$pH = -pK_a + \log([A]_{eq} / [AH]_{eq})$:B
$pH = pK_a + log ([OH^{-}]_{eq} / [H_3O^{+}]_{eq})$: C
$pH = pK_a - log ([A]_{eq} / [AH]_{eq})$: D
$pH = pK_a + log ([A^-]_{eq} / [AH]_{eq})$:E 🗌
	سؤال 24-
: <i>u</i>	المول هر
جزينة	: A 🗌
ايون دقيقة	: A
	: C
عدد يساوي 10 ²³ و 6,02	: D
عدد يساوي 10-19 غدد يساوي 1,6 عدد يساوي 10-19	: E
	سؤال 25-
m/M هي كتلة مادة كميا نية m/M هي كتلتها المولية فالمقدار m/M هو m/M	اذاکانت n
عدد مولات المادة الكميا نية في الكتلة m	: A 🗔
التركيز المولي للمادة الكميا ئيةً	: B
لتركيز الكتلي للمادة الكميا ئية	
لكتلة الحجمية للمادة الكميانية	
عدد جزيئات المادة الكميا نية في الكتلة m	: E

-26	ال	5-
-----	----	----

بريتي $ m H_2SO_4$ نركيزه المولى هو $ m IMOM$ 0,25 mo $ m oM$. النركيز المولي للايونـات $ m H^+$ النتي يحتوي	مض ک	محلول حا	ليكن .
المتول العاموسي المرادي المتول الما المتول العاموسي المرادي المتولي ال	هو:	التمض	عليها

0, 25 mol/l : A ...
0, 025 mol/l : B ...
2, 5 mol/l : C ...
0,5 mol/l : D ...
0,05 mol/l : E ...

سؤال 27-

: نم Fe²⁺ تمكن Fe²⁺ من الحديد أيونات الحديد أيونات

 $\begin{bmatrix} A : & \text{Hirely less than } \\ B : & \text{Hirely less } \\ C : & \text{Constant } \\ D : & \text{Constant } \\ D : & \text{Constant } \\ D : & \text{Constant } \\ E : & \text{Constant } \\ C : & \text{Consta$

سؤال 28-

يتم الاختزال في عمود الكتروليكي بجوار :

A: الكاثود B: الانود C: الكاثود و الانود D: القنطرة الملحية E: الدارة الخارجية

سؤال 29-

الصيغة الكميا نية التالية هي صيغة الإستير المسمى:

A : A ميثانوات الايثيل B : B الميثانوات الايثيل B : B

ال 30- تمثل المعادلة الكيميانية أسفله (المعتبرة من اليسار إلى اليمين) تفاعل:

اختبار العلوم الطبيعية المدة الزمنية 30 دقيقة

السوال -31 - مصادر الطاقة عند الخلية هي

A - السكريات و الدهنيات

B - السكريات و البروتينات

C - البروتينات والدهنيات

D - السكريات فقط

قط البروتينات فقط

السؤال- 32 – أحد الأحياء التالية لا ينتج أمشاجا

A - الإنسان

B - الذرة

البكتيريا

D - ذبابة الخل

E - الفار

السؤال- 33 - الخبر الوراثي محمول على

A - البيبتيدات

B - الأنزيمات

C - الصبغيات

D - الريبوزومات

E - كل الجزيئات

السؤال- 34 - اليرو تثبنات المفرزة تمر ب

A - النواة - الشبكة السيتوبلازمية الداخلية المحببة - جهاز غولجي - الغشاء السيتوبلازمي

الشبكة السيتوبلازمية الداخلية المحببة ـ الميتوكندري ـ الحويصلات الافرازية ـ الغشاء السيتوبلازمي

الشيكة السيتوبلازمية الداخلية المحببة - جهاز غولجي - الحويصلات الافرازية - الغشاء السيتوبلازمي

D - جهاز غولجي - المويصلات الإفرازية - الغشاء السيتوبلازمي

T - الشبكة السيتوبلازمية الداخلية المحببة - الحويصلات الافرازية - الغشاء السيتوبلازمي

المسؤال- 35- إحدى القواعد الأزوتية توجد فقط داخل جزيئة ARN

(A) ادنين - A

(T)نيمين - **B**

(G) ع - كوانين C

(C) سيتوزين D

 $(\dot{\mathbf{U}})$ ۽ أور اسيل \mathbf{E}

السؤال- 36- أحد هؤلاء العلماء اشتهر بأعماله و بقوانين انتقال الصفات الوراثية

A - مندل

B - موركان

C - واتسن

D - ميسلسون

آ - بافلوفسكى

السؤال- 37- الميوزين بروتين يوجد داخل الألياف العضاية و هو على شكل ساق و

A - رأس كروية

B - رأسين كرويتين

C - ثلاثة رؤوس كروية

D - أربعة رؤوس كروية

E - خمسة رؤوس كروية

السؤال- 38- جزيئة ATP تتدخل في

A - تكوين الغشاء السيتوبلازمي

B - الانقسام الخلوي

C- الهضم الضمخلوي

D - إنتاج الطاقة

图 - تركيب البروتين

السؤال- 39- الهندسة الوراثية

A - وسيلة لإنتاج كل الأدوية

B - لا تطبيق ولا تفعيل لها في الطب

C - ليست ضرورية في الميدآن الطبي

D - مكنت من إنتاج الأنسولين بواسطة البكتيريا

E - مكنت من القضاء على الأمراض القاتلة

السؤال- 40- مضاد أجسام

A - جزيئة متواجدة بجسم الإنسان بشكل طبيعي دائم

B - يتكون داخل جسم الإنسان مباشرة قبل دخول جرثومة ما ضارة

- يتكون داخل جسم الإنسان مباشرة بعد دخول جرثومة ما ضارة

D- عضو بجسم الإنسان مختص في مقاومة الأمراض

E - عضي خلوي مختص في مقاومة الأمراض

Epreuve de mathématique

Question 1	Le domaine de définition de la	
Question 1	fonction numérique f de la variable	$(A): [1, +\infty[$
	,	(B): IR
	réelle x définie par:	(C): $]-\infty, -1[\cup]1, +\infty[$
	(x-1)	$(D):]-\infty,-1[$
	$f(x) = \ln\left(\frac{x-1}{x+1}\right)$	$(E):]1,+\infty[$
	est:	(E) : $[1,+\infty[$
Question 2	La fonction dérivée de la fonction :	(4)!(-) 1
	$g:IR \to IR$	(A): $g'(x) = \frac{1}{3\sqrt[3]{e^{2x}}}$
	$x \mapsto \ln\left(\sqrt[3]{e^x}\right)$	
	est la fonction g' définie sur IR par:	(B): $g'(x) = \frac{1}{3\sqrt[3]{e^{x}}}$
	est in foliction g define sur In part	
		(C) : $g'(x) = \frac{e^x}{3}$
		(D): $g'(x) = \frac{1}{3}$
		(E) : $g'(x) = \frac{1}{3e^x}$
		$(E) : g(x) = \frac{1}{3e^x}$
Question 3	La valeur de l'intégrale:	$(\mathbf{A}): I = e^{\pi}$
		(B): $I = e^{\pi} - 1$
	$I = \int_0^{\pi} 2e^x \sin(x) dx$	(C): $I = e^{\pi} + 1$
	est:	(D): $I = 0$
		(E): $I = 1 - e^{\pi}$
Question 4	Soit m un nombre réel non nul.	(A): $y(x) = e^{mx} \left(a \cos(mx) + b \sin(mx) \right)$
	Le colution générale de l'équetien	(B) : $y(x) = ae^{mx} + be^{-mx}$
	La solution générale de l'équation différentielle:	$(C): y(x) = ae^{mx} + b$
	$y'' - 2my' + 2m^2 y = 0$	
	<i>y 2m,</i> 12m y s	$(\mathbf{D}): \ y(x) = (ax+b)e^{mx}$
	est l'ensemble des fonctions y	(E): $y(x) = a\cos(mx) + b\sin(mx)$
	définies sur IR par:	avec a et b deux nombres réels.
Question 5	L'intersection de la sphère :	
Question 3	S ($\Omega(1,1,1), R=1$)	(A): un segment
		(B): un demi-cercle
	et du plan:	(C): un point
	$(P): x - y + z + \sqrt{3} - 1 = 0$	(D): l'ensemble vide
	est:	(E): un cercle.

Question 6	On considère trois urnes U_1, U_2 et U_3	24
	contenant 20 boules reparties comme suit :	(A): $p = \frac{24}{49}$
		49
	Urne U_1 U_2 U_3	(B): $\mathbf{p} = \frac{4}{21}$ (C): $\mathbf{p} = \frac{7}{18}$
	$\begin{array}{ c c c c c c }\hline Urne & U_1 & U_2 & U_3 \\\hline Boules & 4 & 3 & 1 \\\hline \end{array}$	21
	blanches	(C): $p = \frac{1}{10}$
	Boules 3 4 5	18
	vertes	(D): $\mathbf{p} = \frac{8}{20}$ (E): $\mathbf{p} = \frac{4}{7}$
	On choisit au hasard une urne et on tire au	20
	hasard une boule de cette urne.	(E): $p = \frac{4}{7}$
	Sachant que la boule tirée est blanche, la	/
	probabilité p pour qu'elle provienne de l'urne U_1 est:	
Question 7	L'écriture sous la forme exponentielle du	(A): $e^{\frac{5i\pi}{6}}$ (B): $-e^{\frac{5i\pi}{6}}$ (C): $2e^{\frac{5i\pi}{6}}$ (D): $e^{\frac{4i\pi}{3}}$
	nombre complexe:	$(A): e^{-6}$
	5	(B): $-e^{\frac{-3i\pi}{6}}$
	$\frac{\sqrt{3}-i}{-1+i\sqrt{3}}$	5 <i>i</i> π
	$-1+i\sqrt{3}$	(C): $2e^{-6}$
		<u>4iπ</u>
	est:	(D): e^{-3}
		(E): 2
Question 8	La forme algébrique du nombre complexe :	(A): 2^{20i2}
	•	
	$(-1 + i)^{2012}$	$(\mathbf{B}): 2^{2012}\cos\left(\frac{3\pi}{4}\right)$
		` '
		$(\mathbf{C}): -2^{2012}i\sqrt{2}\cos\left(\frac{3\pi}{4}\right)$
	est:	(D): -2^{1006}
		(E): -2^{2013}
Question 9	La limite de la suite de terme général:	(1) 1 (2)
		$(\mathbf{A}): \ln(3)$
	$S_n = \ln \left(\sum_{k=0}^n \frac{e^k}{3^{k+1}} \right)$	$(B): -\infty$
	((C): $ln(e)$
	est:	(D): +∞
		(E): $-\ln(3-e)$
0 (1 10		
Question 10	La limite / au point de la fonction numérique	(A): $/ = \frac{1}{1}$
	R de la variable réelle x définie par :	$(\mathbf{A}): l = \frac{1}{e^2}$
	$R(x) = \frac{1}{x-1} \int_1^x e^{-t^2} dt$	(B): $l = \frac{1}{e}$
	est: $x-1$	
		(C): n'existe pas
		$ \begin{array}{ll} \textbf{(D):} & l = +\infty \\ \textbf{(F):} & l = 0 \end{array} $
		(E): $l = 0$

ſ

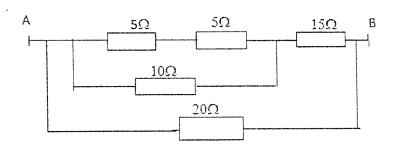
.

Epreuve de physique

11) Un homme emet un cri en direction d'une montagne qui se trouve à une distance D. Le temps mesuré entre l'emission du cri et la récéption de son écho est Δt =4s.

Quelle est la distance D entre l'homme et la montagne sachant que la vitesse du son dans l'air est V=330m/s?

- A- D = 1320 m
- B- D = 330 m
- C D = 660 m
- D- D = 82.5 m
- E- D = 13.2 Km
- 12) Sur une corde élastique se propage une onde mécanique progressive sinusoidale. A un instant t_1 l'allongement d'un point M de la corde est maximal et à un instant t_2 il devient nul. On donne $\Delta t = t_1 t_2 = 0,15s$.


Calculer la vitesse de propagation V de l'onde sachant que sa longueur d'onde λ =0,9m

- A- V = 1.5 m/s
- B- V=3 m/s
- C-V=6 m/s
- D- V = 0.135 m/s
- E- V = 0.667 m/s
- 13) Au cours d'une désintégration radioactive le Polonium $\frac{210}{84}Po$ donne le Plomb $\frac{206}{82}Pb$.

On donne les masses atomiques des particules : m($^{210}_{84}Po$)=210,048 u ; m($^{206}_{82}Pb$)=206,038 u m(α)=4,004 u avec 1u=1,66.10⁻²⁷Kg ; c=3.10⁸m/s ; le numéro d'Avogadro N_A=6,02.10²³mol⁻¹ et la masse molaire du polonium est M(Po)=210g/mol.

Calculer l'energie AE libérée au cours de la désintégration de 0,420Kg du Po?

- A- $\Delta E = 8.96 \cdot 10^{-13} \text{ J}$
- B- $\Delta E= 35,97 \cdot 10^2 \text{ J}$
- C- $\Delta E = 17.98 \cdot 10^{-13} \text{ J}$
- D- $\Delta E = 53,96 \cdot 10^{10} \text{ J}$
- E- $\Delta E= 10,79 \cdot 10^{11} \text{ J}$
- **14)** Déterminer la résistance Re équivalente à l'association des résistances suivante entre A et B?

- A- Re= 55Ω
- B- Re= 40Ω
- C- Re= $12,73 \Omega$
- D- Re= 10 Ω
- E- Re= 27.14 Ω

15) On applique une tension U=200V aux bornes d'un ensemble de deux condensateurs montés en série, de capacités respectivement, C_1 =1mF et C_2 =3mF. Quelles sont les différences de potentiel U_1 aux bornes de C_1 et U_2 aux bornes de C_2 ?

A-
$$U_1 = U_2 = 200V$$

B-
$$U_1=100V$$
 et $U_2=100V$

C-
$$U_1 = 150V$$
 et $U_2 = 50V$

D-
$$U_1 = 50V$$
 et $U_2 = 150V$

E-
$$U_1 = 200V$$
 et $U_2 = 0V$

16) Soit un dipôle électrique constitué par un condensateur de capacité C en série avec une résistance $R=100\Omega$ et une bobine de self inductance L=0.2H de résistance négligeable. On alimente ce dipôle avec un courant alternatif sinusoîdale de fréquence N=50Hz. le courant qui passe dans le circuit et la tension aux bornes sont alors en phase. Quelle est la capacité C du condensateur ?

A-
$$C = 50,66 \text{ mF}$$

B-
$$C = 50,66 \mu F$$

C-
$$C= 5,06 \mu F$$

D-
$$C= 0.016 F$$

E-
$$C=159 \text{ mF}$$

17) Un camion de masse m=500Kg part sans vitesse initiale sur une route rectiligne et horizontale. Il atteint une vitesse v=36Km/h après un intervalle de temps Δt =100s. On suppose que l'accélération du mouvement est constante.

Calculer la distance d parcourue par le camion pendant cette intervalle de temps Δt ?

A-
$$d=50 \text{ m}$$

B-
$$d=500 \text{ m}$$

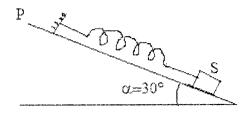
C-
$$d=1 \text{ Km}$$

D-
$$d=1.8 \text{ Km}$$

E-
$$d= 3,6 \text{ Km}$$

18) (suite de l'exercice 17) Calculer le module F de la force motrice que le moteur applique sur le camion sachant que cette force est parallèle au plan de la route et elle a un même sens que celui du mouvement et que la force de frottement est constante, parallèle au plan de la route et de module f=500N

A-
$$F = 550 \text{ N}$$


B-
$$F=1000 \text{ N}$$

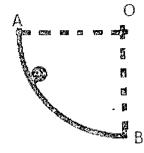
$$C - F = 680 \text{ N}$$

D-
$$F = 500 N$$

E-
$$F=450 \text{ N}$$

19) On considère un ressort de masse négligeable de raideur K. L'une de ses extrémités est reliée à un support fixe, l'autre est reliée à un solide (S) de masse m=0.2Kg qui peut glisser sans frottement sur un plan P incliné par rapport à l'horizontale d'un angle α =30°. On prend g=10N/Kg. On appelle Δ lo l'allongement du ressort à l'équilibre de (S), avec Δ lo=5cm . Calculer la constante de raideur K du ressort ?

- A K = 0.2 N/m
- B-K=0.34 N/m
- C- K= 34.6 N/m
- D- K= 40 N/m
- E K = 20 N/m
- 20) Un corps ponctuel M peut glisser sur une piste AB sous forme d'un quart de cercle de rayon $r=0.010 \, \text{Km}$ de centre O. On donne $g=9.8 \, \text{ms}^{-2}$. On lache le corps M du point A sans vitesse initiale et on néglige les frottemments. Calculer la vitesse V_B du corps M en B?


A-
$$V_B = 14 \text{ Km/h}$$

B-
$$V_B = 0.44 \text{ m/s}$$

$$C-V_B = 0.44 \text{ Km/h}$$

D-
$$V_B = 14 \text{ m/s}$$

E-
$$V_B = 9.9 \text{ m/s}$$

CONCOURS D'ACCES A LA FACULTE DE MEDECINE ET DE PHARMACIE DE FES OCM DE CHIMIE 27 juillet 2012

27 juillet 2012

NB: Pour chaque question, <u>une seule des cinq réponses proposées est juste</u> ; <u>mettre une croix dans la case correspondante</u> .
QUESTION 21-
L'eau de javel est une solution : A: acide B: basique C: neutre D: minérale E: saline
QUESTION 22-
Le papier pH est utilisé pour : A: déterminer le pH d'une solution de façon précise B: déterminer le pH d'une solution de façon approximative C: détecter le nombre d'électron D: réagir avec la solution titrante E: réagir avec la solution titrée
QUESTION 23-
Soit K_a la constante d'acidité du couple $AH_{(aq)}/A^{(aq)}$ ($A^{(aq)}$ est la base conjuguée de l'acide $AH_{(aq)}$). Le pH d'une solution aqueuse contenant le couple acido-basique $AH_{(aq)}/A^{(aq)}$ a pour expression : $A: \Box pH=pK_a+\log\left([H_3O^+]_{eq}\right)/[AH]_{eq}$) $B: \Box pH=-pK_a+\log\left([A^-]_{eq}/[AH]_{eq}\right)$ $C: \Box pH=pK_a+\log\left([OH^-]_{eq}/[H_3O^+]_{eq}\right)$ $D: \Box pH=pK_a-\log\left([A^-]_{eq}/[AH]_{eq}\right)$ $E: \Box pH=pK_a+\log\left([A^-]_{eq}/[AH]_{eq}\right)$
QUESTION 24-
Une mole est: A: une molécule B: un ion C: une particule D: un nombre égal à 6,02 10 ²³ E: un nombre égal à 1,6 10 ⁻¹⁹
QUESTION 25-
Si m est la masse d'un produit chimique et M sa masse molaire, alors la quantité m/M représente : A : le nombre de moles du produit dans la masse m. B : la concentration molaire du produit C : la concentration massique du produit D : la masse volumique du produit E : le nombre de molécules du produit dans la masse m

.. CONCOURS D'ACCES A LA FACULTE DE MEDECINE ET DE PHARMACIE DE FES OCM DE CHIMIE

27 juillet 2012

Durée 30 mn

QUESTION 26-

Soit une solution d'acide sulfurique H ₂ SO ₄ de concentration molaire C = 0,25 mole/l. La concentration molaire des ions H ⁺ dans cette solution est égale à : A: 0,25 mole/l B: 0,025 mole/l C: 2,5 mole/l D: 0,5 mole/l E: 0,05 mole/l
QUESTION 27-
L'oxydation des ions ferreux Fe ²⁺ permet à Fe ²⁺ de: A: se transformer en fer métallique Fe. B: se transformer en Fe ³⁺ C: capter un ou plusieurs électrons D: capter un ou plusieurs protons H ⁺ E: céder un ou plusieurs protons H ⁺
QUESTION 28-
Dans une pile, la réduction se fait au voisinage : A : de la cathode. B : de l'anode C : de l'anode et de la cathode D : du pont salin E : du circuit extérieur
QUESTION 29-
La formule chimique suivante est celle de l'ester nommé :
$CH_3 - CH_2 - CH_2 - C$ $O - CH_2 - CH_3$
A: méthanoate d'éthyle B: buthanoate d'éthyle C: buthanoate de méthyle D: benzoate d'éthyle E: éthanoate de propyle
QUESTION 30- La réaction chimique ci-dessous (considérée de gauche à droite) correspond à une : A: estérification B: hydrolyse d'un ester C: saponification D: réaction acido-basique E: réaction d'oxydo-réduction

~.O

Epreuve des Sciences Naturelles Durée 30 minutes

Question 31: Les sources d'énergie pour la cellule sont.

- A. les glucides et les lipides
- B. les glucides et les protéines
- C. les protéines et les lipides
- D. les glucides seuls
- E. les protéines seules

Question 32 : Un de ces organismes ne produit pas de gamètes

- A. l'Homme
- B. le maïs
- C. la bactérie
- D. la drosophile
- E. le rat

Question 33 : L'information génétique est portée par

- A. les peptides
- B. les enzymes
- C. les chromosomes
- D. les ribosomes
- E. toutes les molécules

Question 34 : Les protéines sécrétées passent par

- A. le noyau, le RER, l'appareil de Golgi et la membrane cytoplasmique
- B. le RER, la mitochondrie, les vésicules de sécrétion et la membrane cytoplasmique
- C. le RER, l'appareil de Golgi, les vésicules de sécrétion et la membrane cytoplasmique
- D. l'appareil de Golgi, les vésicules de sécrétion et la membrane cytoplasmique
 - E. le RER, les vésicules de sécrétion et la membrane cytoplasmique

Question 35: L'une des cinq bases suivantes existe dans l'ARN seulement

- A. l'adénine (A)
- **B.** la thymine (T)
- C. la guanine (G)
- **D.** la cytosine (C)
- E. l'uracile (U)

Question 36: L'un de ces biologistes est connu par ses travaux et ses lois de la transmission des caractères génétiques

- A. Mendel
- B. Morgan
- C. Watson
- D. Meselson
- E. Pavlovsky

Question 37: La myosine est une protéine musculaire ayant la forme d'une tige

- A. portant une seule tête sphérique
- B. portant deux têtes sphériques
- C. portant trois têtes sphériques
- D. portant quatre têtes sphériques
- E. portant cinq têtes sphériques

Question 38: L'ATP est une molécule qui intervient dans

- A. la structure membranaire
- B. la division cellulaire
- C. la digestion intracellulaire
- D. la production d'énergie
- E. la synthèse protéique

Question 39 : Le génie génétique

- A. est un moyen pour produire tous les médicaments
- B. n'a toujours pas d'application en médecine
- C. n'est pas utile en médecine
- D. a permis de produire l'insuline par les bactéries
- E. a permis d'éradiquer les maladies mortelles

Question 40: Un anticorps

- A. est une molécule toujours présente dans le corps humain
- B. se forme dans le corps humain juste avant la pénétration d'un pathogène
- C. se forme dans le corps humain juste après la pénétration d'un pathogène
- D. est un organe du corps humain pour la défense contre les maladies
- E. est un organite cellulaire de défense contre les maladies