
Exercice: capteur d'éclairement

On considère le capteur cicontre destiné à mesurer l'éclairement.

L'amplificateur opérationnel sera considéré comme parfait $(i^+ = i^- = 0 \text{ A})$.

Il fonctionne en régime linéaire, les tensions de saturation étant $\pm V_{sat} = \pm 12 \text{ V}$.

D représente une photodiode éclairée en lumière monochromatique (radiation lumineuse de longueur d'onde déterminée).

1. Étude de l'étage amplificateur

- a) Quelle est la relation entre i₁ et i₂?
- **b)** Dans le mode de fonctionnement de cet étage amplificateur, on a : $V^+ = V^-$.

Exprimer alors V_e en fonction de i₁ et R₁.

- c) Exprimer V_S en fonction de i₁, R₁ et R₂.
- d) Montrer alors que $\frac{V_S}{Ve}$ = T est une constante qui s'exprime en fonction de R_1 et R_2 .
- e) Quelle valeur faut-il donner au rapport $\frac{R2}{R1}$ pour obtenir T = 50 ?

2.Étude de l'étage sonde

On conservera la valeur T = 50 pour la suite du problème.

L'intensité i du courant dans la photodiode est donnée par la relation suivante : $i = I_0 + a E$, où l'on désigne :

par I_0 , l'intensité du courant d'obscurité : $I_0 = 4.0 \mu A$;

par a, la sensibilité de la photodiode : a = 0,17 μA/lux ;

par E, l'éclairement de la photodiode (en lux).

- a) Exprimer Ve en fonction de i puis en fonction de Io, E, a et R.
- b) En déduire l'expression de V_S en fonction de I₀, E, a, T et R.
- c) Mettre V_S sous la forme $V_S = V_{S0} + k E$;

Pour $R = 10 \text{ k}\Omega$, calculer alors V_{S0} (tension de sortie quand la photodiode n'est pas éclairée) et K.

d) Tracer la courbe $V_S = f(E)$ pour un éclairement variant de 0 à E_m , E_m étant l'éclairement maximal que l'on peut mesurer.

 $(E_m = 118 \text{ lux}) \rightarrow \text{échelles}$:

 $1 \text{ cm} \Leftrightarrow 1 \text{ V} \text{ et } 1 \text{ cm} \Leftrightarrow 10 \text{ lux}$

e) Déterminer graphiquement l'éclairement pour $V_S = 8 \text{ V}$.