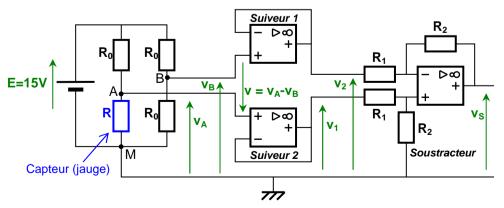

# LES CAPTEURS (2) PRINCIPE D'UNE BALANCE

## **PRÉSENTATION**

La mesure de poids repose sur le principe de déformation d'une jauge de contrainte collée sur le support flexible de pesage (schéma ci-dessous):




La jauge est une résistance R qui varie avec la déformation due à la masse m sur le plateau :

$$R=R_0+\Delta R \ avec \ R_0=360\Omega$$

et 
$$\frac{\Delta R}{R_0} = \text{K.m avec } K = 4.10^{-3} \text{ kg}^{-1}$$

## 1- ÉTUDE DU CONDITIONNEUR

Le schéma général du conditionneur est représenté ci-dessous:



Les amplificateurs différentiels intégrés (ADI) sont supposés parfaits :

- $\Rightarrow$  pas de courants d'entrée :  $i^+ = i^- = 0A$
- $\Rightarrow$  tension différentielle d'entrée  $\varepsilon = v^+ v^- = 0V$  (ce qui donne :  $v^+ = v^-$ )
- ⇒ tension maximale et minimale en sortie : +15V ou -15V.

#### 1- Etude du pont de jauge

- ① Exprimer la tension  $v_A$  en fonction de E,  $R_0$  et  $\Delta R$ .
- ② Exprimer la tension v<sub>B</sub> en fonction de E.
- ③ En déduire que v peut se mettre sous la forme:  $v = E \frac{\Delta R}{4R_0 + 2\Delta R}$ .
- Montrer que l'on peut simplifier l'expression de v pour obtenir : v = 
   \frac{E}{4} \frac{K.m}{1 + \frac{K.m}{2}}.
   \]
- $\circ$  Calculer la valeur de la tension v pour m = 10kg.
- © On admet qu'avec une masse m < 15kg, on a le produit K.m << 1 (petit devant 1); simplifier alors l'expression de v pour le rendre linéaire.

#### 2- Etude des montages suiveurs

- ① Montrer que  $v_1 v_2 = v$ .
- ② Expliquer le rôle de ces étages.

#### 3- Etude du montage soustracteur

- ① Exprimer  $v^+$  en fonction de  $R_1$ ,  $R_2$  et  $v_1$ .
- ② Exprimer v en fonction de  $v_2$ ;  $v_S$ ;  $R_1$  et  $R_2$ .
- $\ \ \,$  On donne  $R_2=10k\Omega.$  Calculer la valeur de  $R_1$  pour obtenir  $v_S=10V$  lorsque m=10kg. Justifier l'intérêt de ce choix.

### 2- MISE AU POINT DE L'ENSEMBLE

- ① Calculer la puissance dissipée au repos (m=0) par l'ensemble du pont de jauge.
- $\ensuremath{\mathbb{Q}}$  Tracer la caractéristique  $v_S$  = f (m). En déduire la masse maximale mesurable.
- 3 On désire augmenter la sensibilité de la balance en utilisant une deuxième jauge identique à la première.
- Où faudrait-il placer cette jauge sur le support flexible ?

A la place de quelle résistance  $R_0$  du pont faudrait-il connecter cette jauge ?