PARTIE

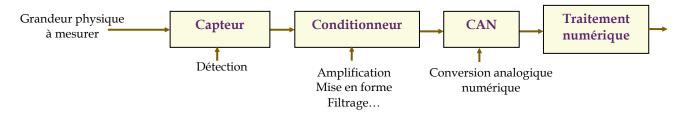
1

La fonction ACQUERIR

2/192

CAPTEURS

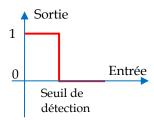
Mise en situation


En automobile, tout devient électronique, l'injection, l'allumage, la climatisation, l'indicateur de vitesse du véhicule, la position des sièges, le freinage...

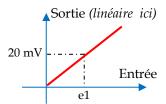
Tout cela est géré par des calculateurs à base de microprocesseur.

Cependant, pour fonctionner, ces calculateurs ont besoin d'informations qui sont prélevées sur le moteur, la boîte de vitesse, les roues...; c'est le rôle des capteurs.

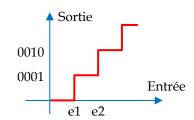
Rappel de la chaîne d'acquisition


La chaîne d'acquisition d'un système technique permet de transformer une grandeur à mesurer en un signal électrique exploitable. Dans la chaîne d'acquisition, le capteur est l'élément sensible à la grandeur physique :

Selon la nature du signal de sortie, on peut classer les capteurs en 3 grandes catégories :


• Capteur <u>logique</u> ou Tout Ou Rien (**TOR**) : la sortie est binaire (information vraie ou fausse). Exemples : détecteur de fin de course, thermostat

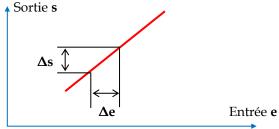
Exemple de caractéristique de transfert d'un capteur logique


Capteur <u>analogique</u>: la sortie varie de façon progressive (variation continue).
 Exemples: thermocouple, dynamo tachymétrique

Exemple de caractéristique de transfert d'un capteur analogique

Capteur <u>numérique</u> : la sortie varie par échelons.
 Exemple : codeur absolu

Exemple de caractéristique de transfert d'un capteur numérique


Caractéristiques des capteurs

⇒ Sensibilité

C'est le rapport entre la variation de la grandeur de sortie et celle de la grandeur d'entrée $S = \Delta s/\Delta e$.

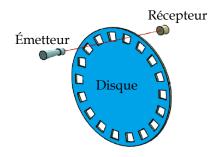
⇒ Linéarité

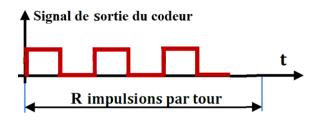
Un capteur est linéaire si sa caractéristique de transfert s = f(e) est linéaire donc si sa sensibilité est constante dans toute sa plage d'emploi.

⇒ <u>Autres caractéristiques</u>: étendue de mesure, précision, fidélité et rapidité.

Les capteurs numériques

1. Codeur Incrémental


L'élément principal est un disque portant une piste divisée régulièrement en secteurs alternativement opaques et transparents.


Autour de la piste, sont installés un émetteur et un récepteur de lumière.

Les impulsions émises par le codeur peuvent renseigner sur :

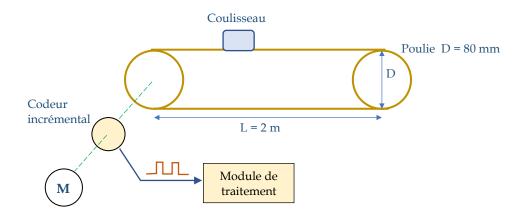
- La position ;
- La **vitesse** ;
- Le sens de mouvement.

Résolution : \mathbf{R} = nombre de points/tour

Précision angulaire : c'est l'angle de rotation qui correspond à une seule impulsion ; c'est donc la

plus petite position angulaire détectée; soit $\theta = \frac{360^{\circ}}{R}$ ou $\theta = \frac{2\pi}{R}$

<u>Vitesse de rotation</u>: $N = 60 \cdot \frac{f}{R}$ (N en tr/min; f : fréquence du signal de sortie)


Application 1 : détection de vitesse

- Principe: mesure de la fréquence des signaux émis par le codeur
- Un codeur incrémental ayant une résolution de **R** = **1000 pts/tr**, délivre un signal de fréquence **f** = **25 kHz**. *Calculer sa vitesse de rotation*

on a $N = 60 \cdot \frac{1}{R} = 60 \cdot \frac{25 \times 10^3}{1000} = 1500 \text{ tr/min}$

Application 2 : détection de position

Principe: comptage du nombre d'impulsions des signaux émis par le codeur

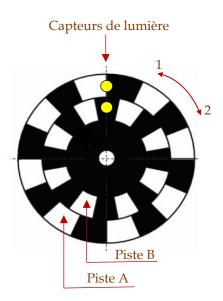
- 1. Calculer la précision angulaire θ du codeur sachant que sa résolution est R = 126 pts/tr. En déduire la précision d du coulisseau (c'est-à-dire le déplacement qui correspond à une impulsion du codeur).
- 2. Combien d'impulsions devra-t-on compter pour la course maximale du coulisseau?
- 3. Sur combien de bits sera codé, sur le module de traitement, le mot image de la position du coulisseau?

1. Précision angulaire est $\theta = \frac{2\pi}{R} = \frac{2\pi}{126} = \frac{\pi}{63}$ rad.

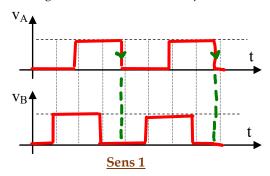
on sat que $S=r.\theta$ ici, $d=\frac{D}{2}.\theta=\frac{80}{2}.\frac{\pi}{63}=2mm$ $r=\frac{9}{5}.\frac{5}{5}=r.\theta$

2 - La Course maxi. est L= 2m; le nombre d'impulsions Correspondant est L = 2000 = 1000 impulsions.

3- Le nombra maxi: d'impulsions à compter est 1000.

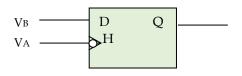

ma 2⁹ = 512 (1000 2¹⁰ = 1024)

Done, il faut 10 bits pour compter 1000 impulsions


Application 3 : détection de sens de rotation


<u>Principe</u>: Analyse du déphasage entre les signaux des voies A et B

Le codeur est équipé de 2 pistes A et B décalées comme l'indique la figure. Chacune des pistes est dotée d'un capteur de lumière à base d'émetteur-récepteur.

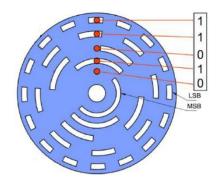


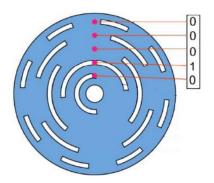
■ Tracer l'allure des signaux vA et vB issus des capteurs A et B.

- On relie les 2 sorties vA et vB à une bascule D ; constater l'état de la sortie Q à chaque front descendant de l'horloge.
- Rappel : pour une bascule D, à chaque front sur H, l'état de l'entrée D est transféré à la sortie Q.

	VA=H	$V_B = D$	Q
Sens 1		0	O
Sens 2		1	ķ

Conclure


On obtient une information logique qui correspond au sens de rotation. En effet, la sotie Q se maintient toujours à :


- 0 pour le premier sens
- 1 pour le deuxième sens

Codeur absolu

Le codeur absolu génère le **code numérique** sur **n bits** correspondant à la **position** d'un mobile, moyennant :

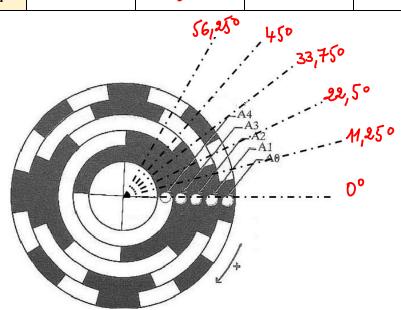
- Un disque codé le plus souvent en Gray et comportant **n pistes** ;
- Un ensemble de **n capteurs** optiques (un capteur par piste).

 $R = 2^n$ positions/tour (nombre de positions possibles) **Résolution**:

 $\theta = \frac{360^{\circ}}{2^{n}}$ (angle qui provoque un changement du code de sortie) Précision angulaire :

Exercice

Pour le codeur absolu fourni ci-dessous, donner :

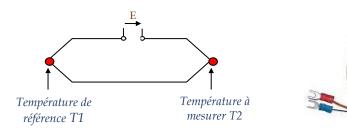

Le nombre de pistes :

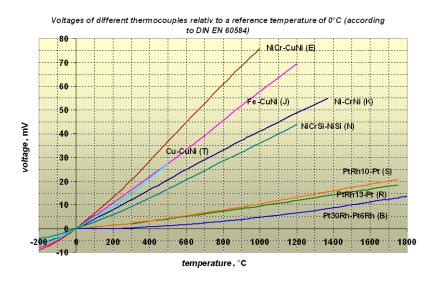
 $R = 2^5 = 32$ positiono/tour $\theta = \frac{360}{32} = 11,25^\circ$ La résolution :

La précision en degrés :

Les codes numériques correspondant aux angles 22,5°, 45° et 46°:

Angle (°)	0	22,5	45	46
Sortie numérique	00000	00011	00110	00110




Capteurs analogiques

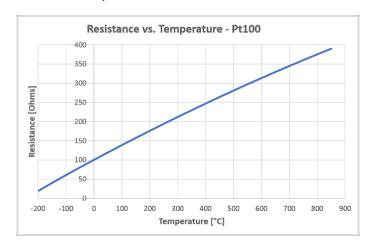
1. Capteur de température

⇒ Mesure par thermocouple

Un thermocouple est constitué de deux conducteurs de natures différentes reliés en 2 points. Une f.é.m E, fonction de la différence des températures T1 et T2, apparaît entre ces deux points.

⇒ Mesure par thermistance

Une thermistance est constituée d'un matériau semi-conducteur. Sa résistance varie en fonction de la température.

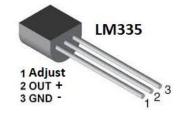

On distingue deux types de thermistances : les CTN et les CTP

- Les **CTN** (Coefficient de Température Négatif) sont des thermistances dont la résistance diminue de façon uniforme avec la température.
- Les **CTP** (Coefficient de Température Positif) sont des thermistances dont la résistance augmente fortement avec la température.

⇒ Mesure par résistor PT100

C'est un résistor à coefficient de température positif. La loi de variation R = f(T) est parfaitement connue. C'est un standard de la mesure de température.

Constitué d'un film ou d'un fil de platine, sa résistance vaut $100~\Omega$ à $0~^{\circ}$ C et $138,5~\Omega$ à $100~^{\circ}$ C . La sensibilité est de $0,385~\Omega/^{\circ}$ C.



⇒ Mesure par variation de tension Zener

Le LM335 est un composant ayant un comportement de diode Zener. Sa tension de sortie, recueillie entre les broches + et -, est proportionnelle à la température : $vs = 10^{-2}.T_K$ (Sensibilité $= 10 \text{ mV/}^{\circ}K$).

Le LM335 se présente sous forme d'un circuit intégré avec notamment un amplificateur intégré et un circuit de linéarisation.

2. Capteurs à jauges extensométriques

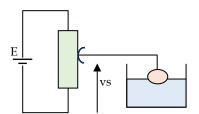
Ils permettent de déterminer les efforts dans les matériaux et sont à l'origine de capteurs de forces, couples, pressions....

Un fil électrique est collé à la surface du matériau. Lorsque celui-ci est soumis à un effort, il se déforme, le conducteur résistif également : sa résistance change.

De manière à miniaturiser le capteur, le conducteur est déposé sur un substrat isolant et la piste décrit un certain nombre d'allers-retours.

3. Capteur de vitesse

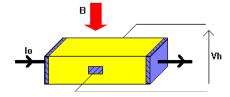
⇒ <u>Dynamo tachymétrique</u>


La dynamo tachymétrique est une petite génératrice à courant continu ; elle délivre une fem proportionnelle à la vitesse.

4. Capteur de déplacement ou de position

⇒ Capteur résistif linéaire ou angulaire

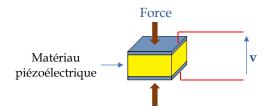
Essentiellement utilisé pour mesurer des déplacements linéaires ou angulaires (Jauge de carburant, niveau de cuve...), il utilise le principe du montage potentiométrique permettant d'obtenir une relation directe entre la tension de sortie vs et le déplacement.



5. Effet Hall

Si un courant Io traverse un barreau conducteur immergé dans un champ magnétique B perpendiculaire à Io, une tension Vh dite de Hall, proportionnelle au champ magnétique et au courant Io, apparaît sur les faces latérales Les capteurs à Effet Hall permettent de :

- Réaliser des capteurs de position et de vitesse sans contact, utilisés notamment dans l'automobile (boîte à vitesse, cardans,...);
- Mesurer les champs magnétiques (Teslamètres) ;
- Mesurer l'intensité des courants électriques (capteurs de courant à Effet Hall).

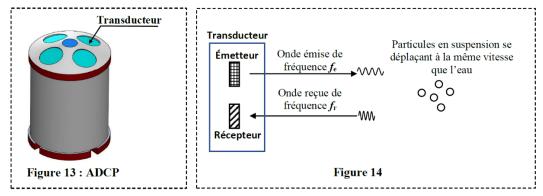

6. Piézoélectricité

La piézoélectricité est la propriété que possèdent certains corps de :

- Générer une tension sous l'action d'une contrainte mécanique ;
- Se déformer sous l'effet d'une tension électrique (effet piézoélectrique inverse).

Le plus connu des matériaux piézoélectriques est sans doute le quartz, toujours utilisé aujourd'hui dans les montres pour générer des impulsions d'horloge.

Application : capteur de pression, d'accélération, de force...



Exercices

Exercice 1: examen national 2021, session normale

L'ADCP est équipé d'un capteur acoustique dit transducteur. Ce dernier émet des ondes ultrasons qui sont réfléchies sur des particules en suspension entrainées par le courant d'eau (Figure 14).

La différence en fréquence des signaux émis et reçu dépend de la vitesse des courants marins : c'est l'effet Doppler.

Le décalage Doppler $\Delta f = f_r - f_e$ (différence entre la fréquence f_r de l'onde reçue et la fréquence f_e de l'onde émise) est donné par la relation :

$$\Delta f = \frac{2 \cdot f_e \cdot V}{c}$$

Où: Δf : décalage Doppler (en **Hz**);

 f_e : fréquence de l'onde émise (en Hz);

V : vitesse des courants marins (en m/s);

c: vitesse du son dans le milieu (en m/s).

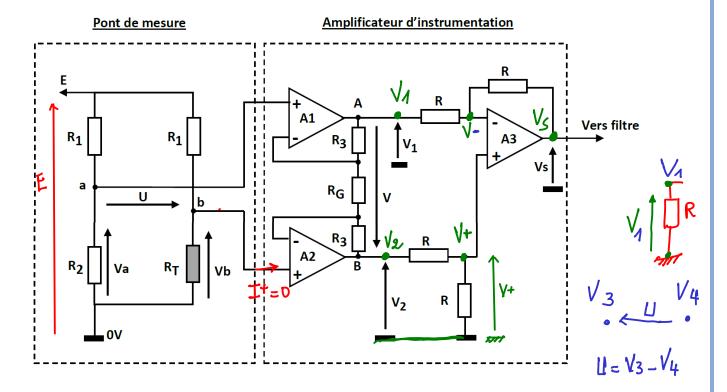
La fréquence d'émission utilisée par le transducteur est $f_e = 150 \text{ kHz}$, ce dernier mesure un décalage Doppler $\Delta f = 300 \text{ Hz}$, on donne la vitesse du son dans le milieu c = 1500 m/s:

Question: 30. calculer la vitesse V (en m/s) des courants marins.

1 pt

Question : 31. Calculer, en kHz, la fréquence f_r de l'onde reçue.

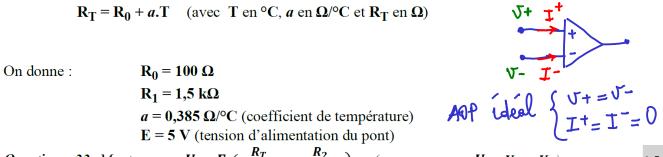
1 pt


Question: 32. Pour un décalage Doppler Af positif, préciser, en se référant au DRES 03, le sens de déplacement des particules

La vitesse du son dans l'eau de mer n'est pas constante mais dépend de certains paramètres ambiants dont la température.

Ainsi, il faut renseigner la température de l'eau afin d'en tenir compte.

La mesure de la température se fait par un capteur à base d'une sonde PT100 associée à un montage de conditionnement. Ce dernier se compose d'un pont de mesure (pont de Wheatstone), d'un amplificateur d'instrumentation et d'un filtre (figure ci-dessous).


Ce conditionneur fournit à sa sortie une tension pratiquement proportionnelle à la température.

Les amplificateurs opérationnels A1, A2 et A3 sont considérés parfaits.

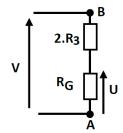
Pont de mesure

La sonde PT100 possède une résistance RT qui varie avec la température T selon la loi :

Question: 33. Montrer que
$$U = E$$
. $\left(\frac{R_T}{R_1 + R_T} - \frac{R_2}{R_1 + R_2}\right)$. (remarquer que $U = V_b - V_a$).

12 / 192

On dit que le pont est en équilibre lorsque sa tension de sortie est nulle $(U = V_b - V_a = 0 \ V \Rightarrow V_b = V_a)$.


Question: 34. Calculer la valeur de R_2 pour que le pont soit équilibré à la température T = 0 °C.

Lycée technique Acharif Al Idrissi - Safi

Question: 35. Pour $R_2 = R_0$, calculer la valeur de la tension U (en mV) à T = 25 °C.

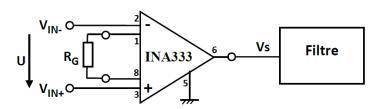
Amplificateur d'instrumentation

La branche AB de l'amplificateur d'instrumentation peut être simplifiée comme le montre la figure suivante :

Question: 36. Montrer alors que $V = (1 + \frac{2.R_3}{R_G})$. U

1,5 pt

2 pts

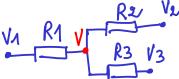

Question: 37. Dans le montage construit autour de l'amplificateur opérationnel A3, montrer que Vs = V (remarquer que $V = V_2 - V_1$).

On admet que la caractéristique U en fonction de la température T peut être assimilée à une droite et a pour équation : $U = 1, 12.10^{-3}$. T (avec T en °C et U en Volt).

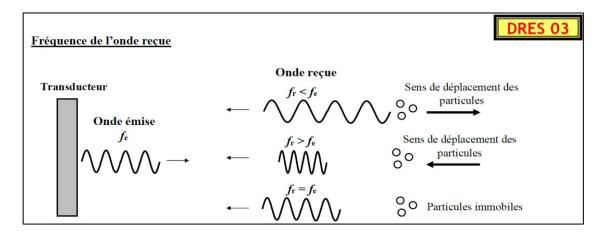
 $\it Question: 38. Montrer$ que l'expression de la tension de sortie $\it Vs$ en fonction de la température $\it T$ est

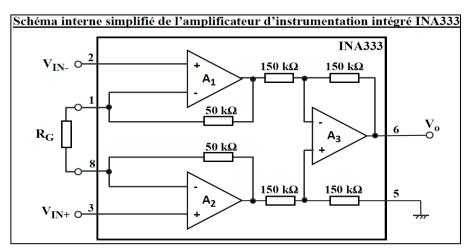
$$V_s = 1, 12. \, 10^{-3}. \, (1 + \frac{2.R_3}{R_G}). T$$
 1,5 pt

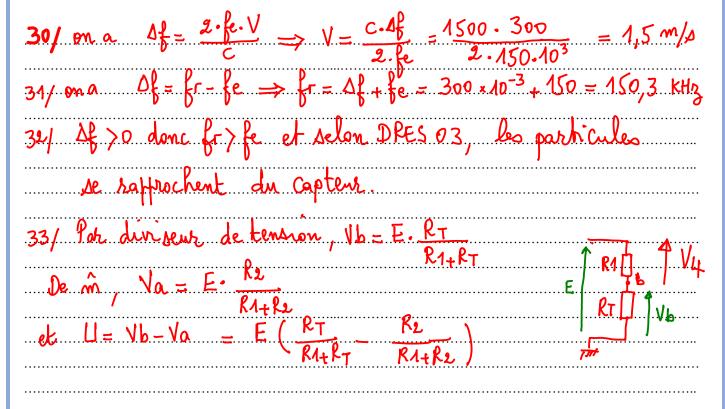
La réalisation matérielle de l'amplificateur d'instrumentation est confiée à l'amplificateur intégré INA333 conformément à la figure suivante :



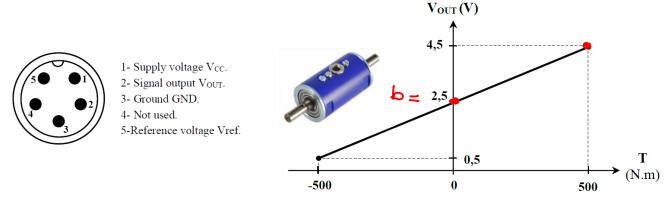
Question : 39. En se référant au schéma interne de l'amplificateur intégré INA333 (DRES 03), relever la valeur de la résistance R_3 . En déduire la valeur à donner à la résistance R_G pour obtenir une


tension $V_S = 5 V à la température <math>T = 25$ °C.


2 pts


th. de Millman

$$V = \frac{\frac{\sqrt{1}}{R_1} + \frac{\sqrt{2}}{R_2} + \frac{\sqrt{3}}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$


Exercice 2 : examen national 2021, session de rattrapage

Tâche 2 : Acquisition et conditionnement du signal

Le moteur M3 du concasseur fournit un couple nominal T_N de 240 N.m. Un capteur de couple mesure en permanence le couple T du moteur pour arrêter le concasseur en cas de surcharge ou de blocage des mâchoires de concassage.

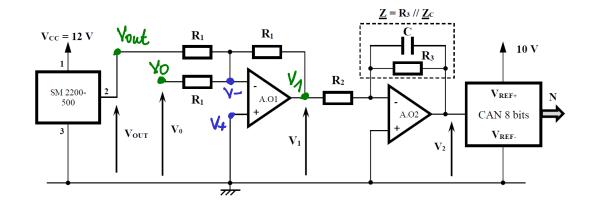
Couplemètre SM 2200-500 de la série 2000 :

Le SM 2200-500 est un capteur de couple rotatif sans contact à électronique intégrée. Alimenté en 9-12V, le SM 2200 délivre une sortie analogique de 0,5 à 4,5 V lorsque le couple mesuré varie de - 500 à +500 N.m.

Brochage et fonction de transfert du couplemètre

Q39- Calculer la sensibilité de ce capteur
$$\mathbf{s} = \frac{\Delta V_{\text{OUT}}}{\Delta T}$$
 et préciser son unité.

1 pt


Q40- Donner alors l'expression de la tension V_{OUT} (en volt) en fonction du couple T (N.m).

1 nt

Conditionnement du signal:

La tension V_{OUT} image du couple moteur T à la sortie du couplemètre est conditionnée (décalage, amplification et filtrage) avant d'être numérisée par un convertisseur analogique numérique (CAN 8 bits).

Le circuit de conditionnement de la page 8 fournit une tension V₂, proportionnelle à la tension V_{OUT}.

Les amplificateurs opérationnels sont supposés parfaits.

On donne:

- V₀ tension de référence continue.
- $C = 4.7 \mu F$, $R_1 = 10 k\Omega$, $R_2 = 10 k\Omega$ et R_3 ajustée à 50 k Ω

Le montage autour de l'AO1 permet de supprimer le décalage du zéro de la tension V_{OUT} ($V_{OUT} = 2,5$ V lorsque le couple T = 0).

Q41- Donner l'expression de la tension V_1 en fonction des tensions V_{OUT} et V_0 .

2 pts

Q42- On admet que $V_{OUT} = 4.10^{-3}$. T + 2.5, donner l'expression de la tension V_1 en fonction du couple T mesuré et calculer la valeur de V_0 pour avoir $V_1 = -4.10^{-3}$. T.

39/ la sensibilité est $s = \Delta Vout = \frac{4,5-2,5}{500-0} = 4 \times 10^3 \text{ V(Nm)}$

40/ Vout est de la forme Vout = S.T.+b

Graphiquement, on releve b= 2,5V

donc Vout = $4x/0^3 \cdot 7 + 2,5$

41/ Il est clair que V+=0

et par le the de Milman, $V^- = \frac{Vaut}{RI} + \frac{VI}{RI} + \frac{VI}{RI}$

 $\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}$

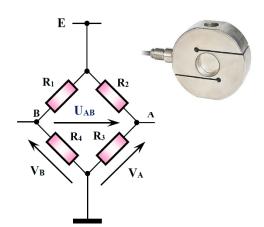
Or $V^{+}=V^{-} \Rightarrow \frac{Vaut}{R1} + \frac{Vo}{R1} + \frac{VA}{R1} = 0 \Rightarrow \frac{Vout + Vo + VA}{R1} = 0$

 $\Rightarrow Vow + Vo + V1 = 0 \Rightarrow V1 = -(Vout + Vo)$

44 ona V1 = - (Vout + Vo) donc V1 = - (4.103 T+2,5 + Vo)

four avoir $V_1 = -4x15^3$ T, il fout 2,5+16 = 0

⇒ 40=-2,5V


.....

Exercice 3: examen national 2022, session normale

Tâche 1 : Acquisition et conditionnement du signal

Pour contrôler la masse supportée par la cabine, on utilise un capteur de pesage en traction.

Le corps d'épreuve du capteur se déforme légèrement lorsqu'il est soumis à une charge et revient à sa position initiale quand cette charge est retirée. Ces déformations extrêmement faibles sont acquises par 4 jauges de contrainte R_1 , R_2 , R_3 et R_4 identiques montées en pont de Wheatstone.

Caractéristiques du capteur de poids

- Etendue de mesure : 1000 Kg
- Tension d'alimentation max tolérée 15 V.
- Sensibilité $\mathbf{s} = 2 \text{ mV/V}$ (en pleine charge $\mathbf{m} = 1000 \text{ Kg}$).
- Charge statique maximale (% sur la pleine échelle) 150 %.
- Charge de rupture (% sur la pleine échelle) 300 %.
- Résistance au repos $\mathbf{R} = 350 \ \Omega$.
- \mathbf{R}_1 et \mathbf{R}_3 des jauges qui travaillent en extension, avec : $\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{R} + \Delta \mathbf{R}$
- R_2 et R_4 des jauges qui travaillent en compression, avec : $R_2 = R_4 = R \Delta R$

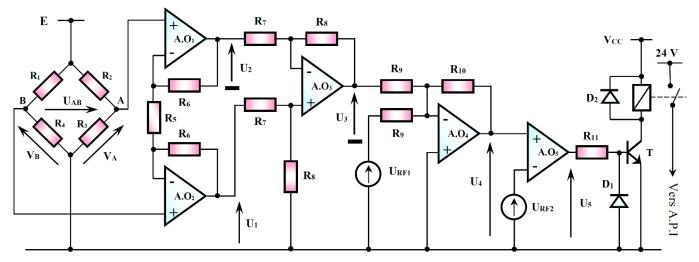
Étude du capteur:

- La variation relative $\frac{\Delta R}{R}$ de la résistance d'une jauge est liée à la masse **m** par la relation : $\frac{\Delta R}{R} = \mathbf{K.m.}$
- La tension de déséquilibre du pont de Wheatstone U_{AB} est liée à la variation ΔR par la relation : $U_{AB} = E \cdot \frac{\Delta R}{R}$.
- En pleine charge ($\mathbf{m} = 1000 \text{ Kg}$), la sensibilité du capteur $\mathbf{s} = \frac{\mathbf{U}_{AB}}{\mathbf{E}} = \mathbf{2} \text{ mV/V}$.
- Tension d'alimentation du pont E = 10 V.

Q.36 - Donner la valeur numérique de la tension U_{AB} en pleine charge.

1,5 pt

Q.37 - Calculer le coefficient K et préciser son unité.


1,5 pt

Q.38 - Exprimer la tension U_{AB} en fonction de la masse m.

1,5 pt

Q.39 - Determiner en Kg la charge statique C_S maximale supportée par le capteur, et sa charge de rupture C_R minimale.

Le montage ci-dessous représente le circuit de conditionnement du signal U_{AB} permettant d'informer l'A.P.I en cas de surcharge.

Les amplificateurs opérationnels sont supposés parfaits avec $\pm V_{SAT} = \pm V_{CC} = \pm 15 \text{ V}$.

<u>Étude du conditionneur</u>:

La tension de déséquilibre U_{AB} est amplifiée et mise en forme avant d'être utilisée par l'A.P.I. Pour cela, on utilise un amplificateur (montage autour de AO1, AO2, AO3 et AO4) associé à un comparateur à seuil (montage autour de AO5).

Q.40 - Pour le montage autour de AO3, montrer que $U_3 = \frac{R_8}{R_7}$. $(U_1 - U_2)$.

On donne:

- $\mathbf{R_8} = \mathbf{R_7}$:
- $U_1 = 51.V_B 50.V_A$;
- $U_2 = 51.V_A 50.V_B$.
- **Q.41** Donner l'expression de U_3 en fonction de U_{AB} , puis en fonction de la masse m (cabine + charge).

Q.42 - Pour le montage autour de AO4, montrer que $U_4 = -\frac{R_{10}}{R_9}$. $(U_3 + U_{RF1})$.

On donne:

- $U_3 = -2.02.10^{-3}$.m;
- $\mathbf{m} = \mathbf{m}_0 + \mathbf{m}_{C}$, avec :
 - ✓ $\mathbf{m_0} = 200 \text{ Kg}$: masse de la cabine vide;
 - ✓ m_C: masse de la charge transportée ;
 - ✓ m: masse totale (cabine + charge).
- U_{RF1} tension continue de référence ($U_{RF1} = 0.404 \text{ V}$).

Q.43 - Montrer alors que
$$U_4 = 2,02.10^{-3}.\frac{R_{10}}{R_9}.m_C$$

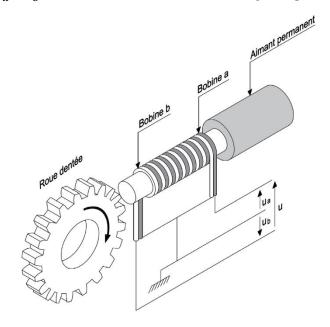
1 pt

Q.44 - On veut que U_4 soit égale à 5 V lorsque $m_C = 800$ kg, déterminer alors la valeur de R_{10} , sachant que

$$R_9 = 22 k\Omega$$
.

19 / 192 ATC / 2° STE	Lycée technique Acharif Al Idrissi - Safi	J.Temouden
		••••••
	p l	
	50 A\\)	
	1 (2 John ma)	
	\\ \phi \ \ \Phi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•••••
\\\\\	<i>y</i> , <i>y</i> .	
//80.		

Exercice 4: examen national 2022, session de rattrapage


<u>Tâche 1</u>: Acquisition de la vitesse du moteur d'entrainement du bac

La vitesse de rotation du moteur d'entrainement est surveillée en permanence au cours du déplacement du bac. Le prélèvement de la vitesse est réalisé par un capteur inductif monté sur l'arbre de sortie du moteur.

⇒ <u>Capteur de vitesse inductif</u> (figure ci-dessous)

Le capteur intègre deux bobines soumises à l'action du champ magnétique d'un aimant permanent. L'ensemble est placé devant une roue dentée qui, en tournant, module le flux magnétique dans les bobines.

La variation de flux engendre deux tensions u_a et u_b en opposition de phase. Le capteur fournit une tension de sortie différentielle $u = u_a - u_b$; cela le rend moins sensible aux signaux parasites.

La fréquence f de la tension u est proportionnelle à la vitesse de rotation \mathbf{n} :


 $\mathbf{f} = \frac{\mathbf{n}}{60}$. **Z** avec: \mathbf{f} : fréquence du signal de sortie du capteur (en **Hz**);

n : vitesse de la roue dentée (en tr/min);

Z : nombre de dents de la roue.

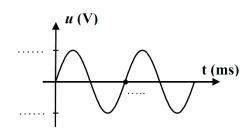
Q.33) On donne Z = 20 dents; calculer la valeur de la fréquence f (en Hz) qui correspond à une vitesse de rotation du moteur n = 1475 tr/min.

Un relevé de la sortie u issue du capteur a donné l'oscillogramme suivant :

Q.34) Calculer la vitesse de rotation n (en tr/min) qui correspond à cet oscillogramme ;

1,5 pt


Q.35) Pour les signaux u_a et u_b proposés, compléter les trois valeurs manquantes du signal u(t).

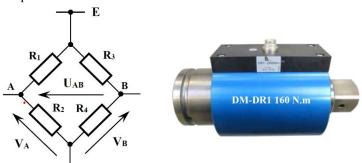

1.5 n

Sur Jon Mary John Mary Joh

Jan man.

Q.35)

Exercice 5: examen national 2023, session normale


Tâche 2: Acquisition, adaptation et conditionnement du signal

Le moteur utilisé dans l'escalier fournit un couple nominal C_N de 72,2 N.m. La mesure du couple permet de vérifier la puissance réelle du moteur.

Le système de sécurité contrôle en permanence le couple moteur pour arrêter l'escalier en cas de surcharge ou de blocage.

Acquisition du couple moteur (couplemètre DM-DR1):

Ce couplemètre est un capteur de couple à jauges extensométriques inséré sur l'arbre, entre le moteur et la charge à entraîner. Il est constitué d'un barreau cylindrique sur lequel sont collées quatre jauges métalliques identiques.

- ✓ Etendu de mesure : 160 N.m (E.M)
- ✓ Sensibilité : 2 mV/V
- ✓ Résistance du pont : 350 Ω
- ✓ Grande précision : 0,1% de l'E.M
- ✓ Couple ultime minimal de rupture : 250% de l'E.M

Les paires de jauges sont diamétralement opposées de telle sorte qu'une torsion du barreau, proportionnelle au couple exercé sur l'arbre, entraîne une variation symétrique de leurs résistances respectives :

$$\mathbf{R}_1 = \mathbf{R}_4 = \mathbf{R} - \Delta \mathbf{R}$$
 et $\mathbf{R}_2 = \mathbf{R}_3 = \mathbf{R} + \Delta \mathbf{R}$

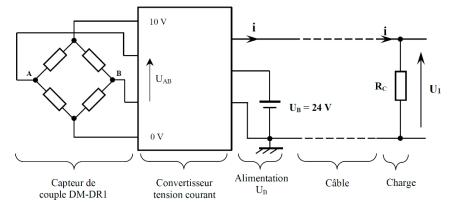
- **R** est la résistance au repos ($\mathbf{R} = 350 \ \Omega$);
- ΔR est la variation de résistance proportionnelle au couple à mesurer Cu selon la relation $\frac{\Delta R}{R} = K$. Cu.
- Les quatre jauges sont interconnectées en pont de Wheatstone qui est alimenté en continu sous la tension E = 10 V.
- **Q.31-**Exprimer les tensions V_A et V_B en fonction de E, R et ΔR .

2 pts

Q.32-Montrer alors que la tension de déséquilibre U_{AB} s'écrit sous la forme : $U_{AB} = E \cdot \frac{\Delta R}{R}$.

1 pt

En pleine charge (Cu = 160 N.m), la valeur numérique de la tension de déséquilibre est : $U_{AB} = 20 \text{ mV}$.


- Q.33-Mettre l'expression de U_{AB} sous la forme $U_{AB} = \alpha$. Cu. Calculer alors, la valeur du coefficient α en précisant son unité.
- Q.34-Déterminer Cr le couple ultime minimal de rupture en N.m.

1 pt

Adaptation du signal:

Le capteur de couple DM-DR1 est relié à un convertisseur tension-courant délivrant un courant d'intensité qui varie linéairement avec le couple.

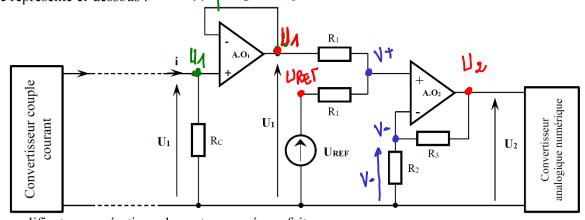
La figure ci-dessous représente le câblage du capteur associé au convertisseur tension-courant.

On a branché une résistance de charge R_C de 180 Ω dans la boucle de courant.

On donne l'expression du courant i (mA) en fonction du couple Cu (N.m) : i = 0,16.Cu + 4

Q.35-Donner l'expression de la tension $U_I(mV)$ en fonction du couple Cu (N.m).

1.5 pt


Q.36-En déduire la sensibilité **s** du montage et donner son unité.

1.5 pt

Amplification et décalage du signal analogique U1:

Le signal U₁ image du couple Cu, doit être numérisé par un convertisseur analogique numérique (CAN). Le signal à l'entrée du CAN doit être compris entre 0 et 5 V, lorsque le couple Cu varie de 0 à 100 N.m.

L'objectif est de conditionner le signal U₁ pour la conversion analogique numérique, alors on utilise le montage représenté ci-dessous : Ampli. Suites

Les amplificateurs opérationnels sont supposés parfaits.

On donne:

- Uref tension continue, avec $U_{REF} = -0.72 \text{ V}$.
- $U_1(V) = 29.10^{-3}$. Cu + 0.72.
- Q.37- Donner l'expression de U_2 en fonction de U_1 , U_{REF} , R_2 et R_3 .

3 pts

Q.38- En déduire l'expression de U_2 en fonction du couple moteur Cu.

1 pt

Q.39- On veut que U_2 soit égale à 5 V pour Cu = 100 N.m pour exploiter toute l'échelle du CAN, calculer alors la résistance R_3 , sachant que $R_2 = 3.3$ K Ω .

21/1/2	1110, 2 012	2) cee teemique menum manissi sum	J. Temouden
31/ Pa	zdivipeur	de tension,	R1.,,
VA =	= E . Rr	= E. R+ΔR = E.(R+ΔR) R-ΔR+R+ΔR = 2R	R1 E
	R1+R2	R-DR+R+DR 2R	VA
• V8=	F. K4	$= \frac{E(R-\Delta R)}{R+\Delta R+R-\Delta R} = \frac{E(R-\Delta R)}{2R}$	
32/un	a LIAB = VA-	VB= E(R+BR) _ E(R-BR) 2R 2R	
Ца	B = E (R+1	$R - R + \Delta R = E \cdot \frac{\Delta R}{R}$	
	9,	AR et AR = K. Cu donc UAB =	= E.K.Cu = d.Cu
done l	IAB = X. Cu	et d = DAB _ 20 = 0,125	mV/(Nm)
34/ on	a Cr = 25	$0\% = 100 \times 160 = 400 \text{ Nm}$	1
.35/20	i d Ohm, U.	$1 = RC \cdot L = 180 \cdot (0.16 \times Cu + 4) = 28$	5,8·lu + t20 (mv)
36/ Do	pres Q35, l	a pensibilité est 5 = 28,8	/m/(Nm)
37/ Pa	r diviseur	, V = 12. Rx Rx + R3	
Pas	th. Millman.	V+ = RA + RA = UA+UREF	
		V+ = UA + UREF = UA+UREF RA + A 2	
dz		. R2 _ UN+UREF → U2= (R)	
	• • • • • • • • • • • • • • • • • • • •	······································	
•		10-3. Cu+072 et d'après 937	•
		29.10 ⁻³ .Cu+0.72 -0.72) = 29.10 ⁻³	₩ ₩.3.
39 om	α $112 = 29$.	$10^{3} \frac{(R2+R3)}{2R2} \cdot Cu \implies R_3 = \frac{2R2}{29\cdot 10}$	12 R2
R3=	R2 (2ll2 29.10 ⁻³ . ($\frac{282}{-1} = 3.3 \times 10^{3} \left(\frac{2.5}{29.10^{3} \times 100} \right)$	$S = 80+9,3 \Omega$

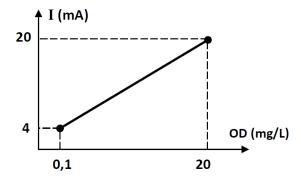
Exercice 6: examen national 2023, session de rattrapage

⇒ <u>Acquisition du taux d'oxygène dissous</u>

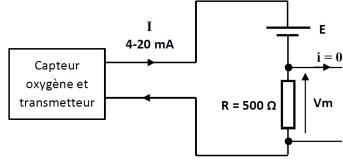
L'oxygène dissous dans l'eau du bassin d'aération est mesuré à l'aide d'une sonde oxygène dont voici un extrait de ses caractéristiques techniques :

Sonde pour oxygène dissous			
Précision de mesure	± 0,1 mg/L (milligrammes par litre)		
Tension d'alimentation	18 30 V DC		
Signal de sortie	4-20 mA correspondant à la plage de mesure		
Principe de mesure	Optique		
Plage de mesure	0,1 20 mg/L		

Q.31) À partir de la fiche technique du capteur, ci-dessus, compléter le tableau.


2 pts

La sortie **4-20 mA** présente l'avantage de maintenir la précision malgré les chutes de tension dues aux résistances des fils de liaison.


La courbe ci-contre est la caractéristique de transfert **I** en fonction de l'oxygène dissous **OD** du capteur

On note que la courbe a pour équation : I = a.OD + 3,92

(OD en mg/L et I en mA)

Le schéma ci-contre est d'un montage typique de conversion du courant ${\bf I}$ délivré par le capteur en une tension ${\bf Vm}$.

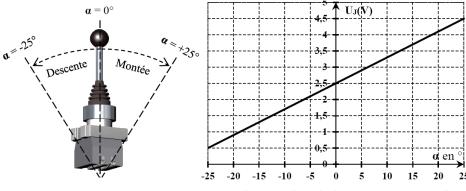
- Q.32) Pour une consigne typique d'oxygène dissous OD = 2 mg/L, calculer l'intensité du courant I délivrée par le capteur.
- Q.33) En déduire la tension Vm correspondante

Grandeur mesurée	Oxygene dissous		
Étendue de mesure	o,1a	20 mg/L	
Grandeur de sortie	☐ Tension		☐ Impédance
Nature de la sortie	★ Analogique	☐ Numérique	☐ TOR

 $34 a = \frac{\Delta I}{\Delta 0D} = \frac{20-4}{20-0.1} = 0.8 \text{ mA/(mg/L)}$

on a $I = a.00 + 3.92 = 0.8 \cdot 2 + 3.92 = 5.52 \text{ mA}$

33/ Vm = RI = SOO x S, S2 x 103 = 2,76 V


Exercice 7: examen national 2024, session normale

Tâche 2 : Acquisition de la position du manche de la manette de commande du crochet

La montée ou la descente du crochet est commandée par l'opérateur grâce à une manette industrielle : plus le manche de la manette est poussé vers l'extrémité plus la vitesse du moteur augmente.

La manette de pilotage du crochet (Joystick J1) est de type analogique. Alimentée en 5 V, elle délivre une sortie analogique U_J de 0.5 à 4.5 V lorsque la position du manche α varie de -25° à $+25^{\circ}$.

- $\alpha = 0^{\circ}$: manche de la manette en position médiane (manche relâché).
- $\alpha = +25^{\circ}$: manche de la manette à l'extrémité avant.
- $\alpha = -25^{\circ}$: manche de la manette à l'extrémité arrière.

Fonction de transfert de la manette : $U_J = f(a)$

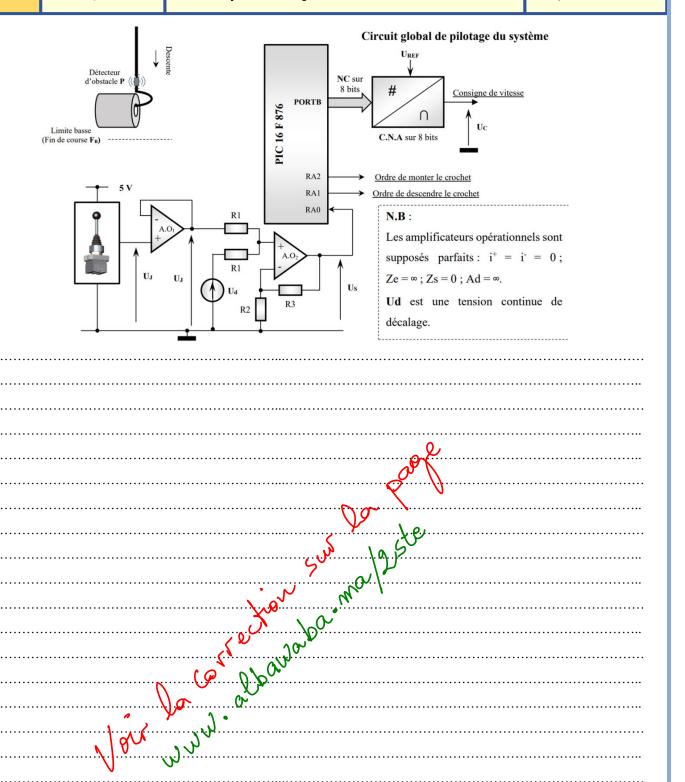
Q.40-Calculer la sensibilité de ce capteur $\mathbf{s} = \frac{\Delta \mathbf{U}_{J}}{\Delta \alpha}$ et préciser son unité, en déduire l'expression de la tension

 U_J (en Volt) en fonction de la position du manche α (en $^{\circ}$).

2 pts

ADAPTATION DU SIGNAL ISSU DU JOYSTICK

Le signal U_J, à la sortie de la manette, est numérisé par un convertisseur analogique numérique (CAN interne du PIC 16F876). Le signal à l'entrée du CAN doit être compris entre 0 et 5 V, lorsque la position du manche de la manette α varie de -25° à $+25^{\circ}$.

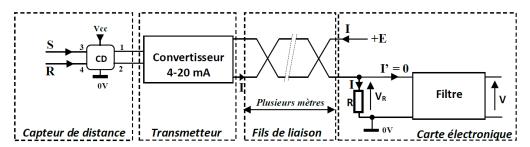

Tâche 3 : Étude du circuit de décalage du signal U_J

L'objectif est de conditionner le signal U_J pour exploiter toute l'échelle du convertisseur analogique numérique, alors on utilise le montage autour de l'amplificateur AO2 représenté sur le document DRES 03.

Q.41- Donner l'expression de U_S en fonction de U_J , U_d , R_2 et R_3 . En déduire que l'expression de U_S en fonction de la position α du manche de la manette s'écrit : $U_S = \frac{R_3 + R_2}{2 \cdot R_2}$. $(0, 08. \alpha + U_d + 2, 5)$.

Q.42- Pour $\alpha = -25^{\circ}$, calculer la valeur de la tension U_d pour avoir $U_S = 0 V$.

Q.43- Sachant que $R_2 = 22 \ k\Omega$ et $U_S = \frac{R_3 + R_2}{2 R_2}$. (0, 08. $\alpha + 2$), calculer la valeur de la résistance R_3 pour avoir $U_S = 5 V pour \alpha = +25$ °. 1,5 pt



Exercice 8: examen national 2024, session de rattrapage

Le capteur de distance (CD) a une étendue de mesure de 0 à 4800 mm. Il est situé assez loin de l'armoire de commande contenant l'ensemble de l'appareillage ainsi que les cartes électroniques.

Pour éliminer l'effet négatif de la chute de tension due à la longueur importante des câbles, on utilise un transmetteur de type « 4-20 mA ».

Le schéma de principe du transmetteur est donné ci-dessous.

Le capteur analogique de distance **CD**, qui mesure la longueur du tube à découper, possède six bornes : deux sorties pour la mesure, deux entrées **S** et **R** (**S** : lancement de la mesure ; **R** : réinitialisation de la mesure) et deux bornes d'alimentation **Vcc** et **0 V**.

Tâche 1 : Étude du transmetteur

Le transmetteur comporte un convertisseur qui génère un courant I analogique, image de la longueur mesurée, qui varie entre 4 mA et 20 mA :

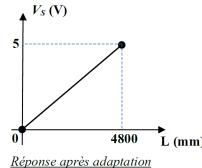
- I = 4 mA pour la première valeur de l'échelle de mesure (L = 0 mm)
- I = 20 mA pour la dernière valeur de l'échelle de mesure (L = 4800 mm).

Le courant I varie entre 4 et 20 mA en fonction de la longueur L suivant la relation : $I = a \cdot L + b$.

Q35. Calculer les valeurs de a (sous forme d'une fraction) et de b en précisant leurs unités.

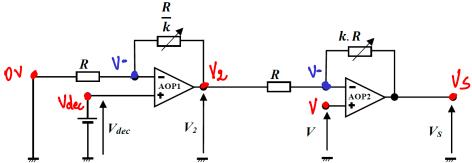
Q36. Exprimer V_R (en V) en fonction de R(en Ω) et L (en mm).

2 pts


Q37. Calculer les valeurs des tensions V_{Rmin} et V_{Rmax} de V_{R} pour $R = 275 \Omega$.

1 pt

Pour un traitement ultérieur, on est amené à adapter le signal V de façon à obtenir une tension V_S de 0 V lorsque la distance mesurée est de 0 mm et de 5 V lorsque la distance mesurée est de 4800 mm.


Les courbes ci-dessous représentent la réponse du capteur avant et après adaptation du signal.

Tâche 3: Étude du circuit d'adaptation

Pour adapter la tension V, on l'applique au circuit électronique ci-dessous, construit autour de deux amplificateurs opérationnels (AOP) considérés parfaits. La tension V_{dec} est une tension continue de décalage.

Q42. Exprimer la tension V_2 en fonction de V_{dec} .

Q43. Exprimer la tension V en fonction de V_2 et V_S .

Q44. Montrer que $V_S = (1 + k) \cdot (V - V_{dec})$.

Q45. Pour $V_{dec} = 1,1 V$, calculer la valeur de k (à $\frac{1}{1000}$ près) pour obtenir l'adaptation désirée.

2 pts

35/\(a = \frac{\Delta I}{\Delta L} = \frac{20 - 4}{4800 - 0} = \frac{1}{300} \text{mA}/\text{mM}

6na \quad \quad I = a \quad \quad \quad L = \text{Omm}, \quad \quad I = \frac{4mA}{mM}

36/\(V_R = R \quad I = R \left(a \quad \quad + b \right) = R \left(\frac{1}{300} + 4 \right) \quad \text{(en mV)}

et \quad V_R = R \left(\frac{1}{300} + 4 \right) \quad \quad \quad \quad \text{(en V)}

37/ $VR_{min} = RI_{min} = 275 \times 4 \times 10^{-3} = 1.1 \text{ V}$ $VR_{max} = R \cdot I_{max} = 275 \times 20 \times 10^{-3} = 5.5 \text{ V}$

42/ on a V+= Vdec; Millman, $V=\frac{Q}{R}+\frac{\sqrt{2}}{\frac{R}{K}}=\frac{\frac{K}{2}}{\frac{1}{R}+\frac{1}{K}}=\frac{\frac{1}{2}+\frac{K}{2}}{\frac{1}{2}+\frac{K}{2}}=\frac{K}{1+K}$

or V+=V- => Vdec = KV2 = (1+K). Vdec

43/ ena V+=V; Par Millman, $V=\frac{\sqrt{2}+\frac{\sqrt{5}}{KR}}{\frac{1}{2}+\frac{1}{4R}}=\frac{K\cdot V2+V5}{K+1}$

or $V+=V^- \Rightarrow V = \frac{KV2+V5}{1+K}$

44/ Dapres Q43, Vs = (1+K).V-KV2 = (1+K)V-K. (1+K). Vdec

 \Rightarrow $V_S = (1+k)(V-V \operatorname{dec})$

ATC/2e STE

2

FILTRAGE ANALOGIQUE

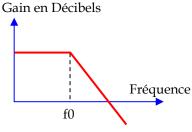
Généralités

La fonction filtrage consiste à atténuer les signaux de fréquences indésirables.

L'intervalle des fréquences autorisées par le filtre s'appelle bande passante.

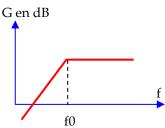
On distingue:

- Les filtres passifs : constitués seulement de dipôles passifs (résistances, condensateurs, bobines) ;
- Les filtres actifs : constitués de dipôles passifs et de dipôles actifs (amplificateurs opérationnels, transistors...).

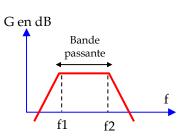

Les filtres actifs ont l'avantage de :

- Avoir des caractéristiques indépendantes de la charge ;
- Avoir une amplification possible dans la bande passante.

1. Types de filtres

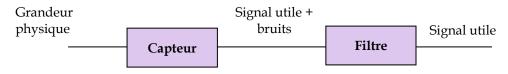

⇒ Filtre passe-bas

Laisse passer les signaux de fréquence **inférieure** à une fréquence déterminée **f0** dite **fréquence de coupure**.


⇒ Filtre passe-haut

Laisse passer les signaux de fréquence **supérieure** à sa fréquence de coupure **f**0.

⇒ Filtre passe-bande


Laisse passer les signaux de fréquence **comprise** entre ses deux fréquences de coupure **f1** et **f2**.

Parmi les principales applications des filtres, on peut citer :

- Extraire la valeur moyenne d'un signal périodique par un passe-bas ;
- Changer la tonalité d'un son (éliminer les sons aigus par un passe-bas, éliminer les sons graves par un passe-haut);
- Sélectionner une fréquence ou une bande de fréquence par un passe-bande (télévision, radio...).

Cas de la chaîne d'acquisition

Lois mathématiques et électriques utiles

Quelques propriétés de la fonction logarithme décimal

$$log(ab) = log a + log b$$

$$log 1 = 0$$

$$\log(\frac{a}{b}) = \log a - \log b$$

$$log 10 = 1$$

$$\log (a^n) = n.\log a$$

$$log 100 = 2$$

Quelques propriétés des nombres complexes

Soit z un nombre complexe,
$$\underline{z = a + jb \quad où}$$
 a, b sont des réels et $j^2 = -1$

Module de z :

$$||\mathbf{z}|| = \sqrt{\mathbf{a}^2 + \mathbf{b}^2}$$

Argument de z :

$$arg(z) = arctg(\frac{b}{a})$$

$$||z1.z2|| = ||z1||.||z2||$$

$$arg(z1.z2) = arg(z1) + arg(z2)$$

$$\left\| \frac{z1}{z2} \right\| = \frac{||z1|}{||z2|}$$

$$\arg\left(\frac{z1}{z^2}\right) = \arg(z1) - \arg(z2)$$

Impédances en notation complexe

L'impédance d'une résistance **R** est :

$$\underline{Z}_{R} = R$$

L'impédance d'une bobine d'inductance L est :

$$Z_L = jL\omega$$

L'impédance d'un condensateur de capacité C est :

$$\underline{Z}_{C} = \frac{1}{iC\omega}$$

2. Fonction de transfert

La fonction de transfert d'un filtre, en notation complexe

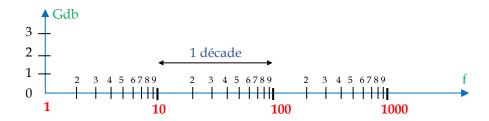
$$\underline{\mathbf{A}\mathbf{v}} = \frac{\underline{V}\underline{s}}{\underline{V}\mathbf{e}}$$

<u>L'amplification Av</u> est le module de <u>Av</u> soit

- $\mathbf{A}\mathbf{v} = || \mathbf{A}\mathbf{v} ||$
- La phase φ (déphasage entre l'entrée et la sortie) est l'argument de Av soit
- $\varphi = arg(\underline{Av})$

Plutôt que d'utiliser l'amplification Av, on préfère parler du gain G en décibels dB:

$$G = 20 \log(Av)$$


On en déduit l'amplification en fonction du gain

$$\mathbf{A}\mathbf{v} = \mathbf{10}^{\frac{G}{20}}$$

3. Diagramme de Bode

ATC/2e STE

Un axe gradué linéairement est mal adapté pour représenter une grandeur qui s'étend sur un intervalle très large, c'est le cas du domaine des fréquences d'un filtre. Pour cela, on recourt à une échelle logarithmique. Le diagramme de Bode est la représentation du gain dB et de la phase en fonction de la fréquence sur une échelle semi-logarithmique.

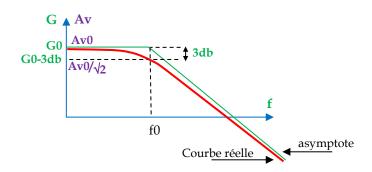
Une décade se définit par l'intervalle [f, 10f]. Par exemple, [20Hz, 200Hz] = 1 décade et [15kHz, 15MHz] = 3 décades

Fréquence de coupure à -3db

La **fréquence de coupure à -3 dB** d'un filtre est telle que $\mathbf{A}\mathbf{v} = \mathbf{A}\mathbf{v}0/\sqrt{2}$

En décibels, cela se traduit par $G = G_0 - 3db$.

En effet,
$$Av = Av0/\sqrt{2}$$

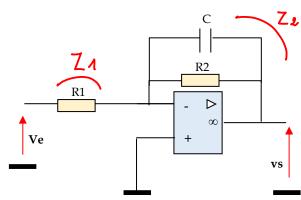

$$\Rightarrow$$
 G = 20.log(Av0/ $\sqrt{2}$)

$$\Rightarrow G = 20 \log(Av0) - 20 \log\sqrt{2}$$
$$= G_0 - 3db$$

G₀: gain maximal (ou gain dans

la bande passante ou encore gain statique)

Av0: amplification maximale


Formes canoniques des filtres du 1e ordre

Les fonctions de transferts, en notation complexe, des filtres du 1e ordre peuvent s'exprimer sous les formes canoniques suivantes:

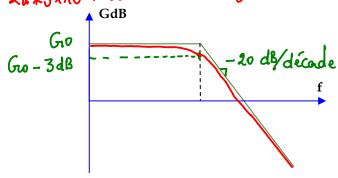
Passe-bas	Passe-haut	Passe-bande	
$\underline{\mathbf{A}\mathbf{v}} = \mathbf{A}\mathbf{v}_0 \cdot \underline{1}$ $1 + \underline{\mathbf{j}\omega}$ $\underline{\omega_0}$	$\underline{\mathbf{A}\mathbf{v}} = \mathbf{A}\mathbf{v}_0 \cdot \underbrace{\frac{\mathbf{j}\omega}{\omega_0}}_{1+\mathbf{j}\omega}$	$\underline{\mathbf{A}\mathbf{v}} = \mathbf{A}\mathbf{v}_0 \cdot \underbrace{\frac{\mathbf{j}\omega}{\omega_1}}_{(1+\underline{\mathbf{j}\omega})} \cdot \underbrace{\frac{\mathbf{j}\omega}{\omega_1}}_{(1+\underline{\mathbf{j}\omega})}$	
Av_0 : Amplification maximale $f_0 = \frac{\omega 0}{2\pi}$: fréquence de coupure	Av_0 : Amplification maximale f_0 : fréquence de coupure	Av_0 : Amplification maximale f_1 : fréquence de coupure basse f_2 : fréquence de coupure haute $(f_2 >> f_1)$	

Étude des filtres actifs

Filtre passe-bas

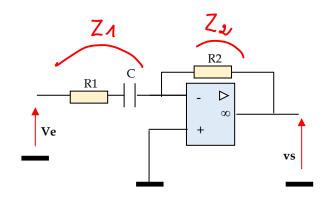
on a $V^{+}=0$ et par le thide Millman, $V^{-}=\frac{\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}}{\frac{1}{2}+\frac{1}{2}}$ or $V^{+}=V^{-}\Rightarrow \frac{V^{+}}{2}+\frac{V^{+}}{2}=0$

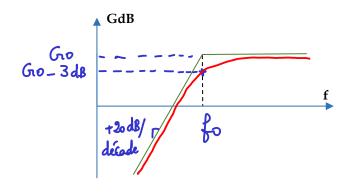
donc $AV = \frac{V_5}{V_6} = -\frac{Z_2}{Z_1}$; avec:

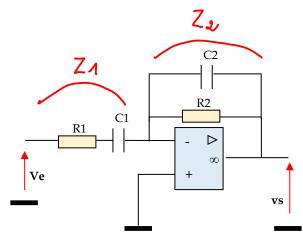

 $\frac{Z_4}{Z_1} = \frac{Z_{R_1}}{Z_{R_2}} = \frac{R_1}{Z_{R_1}}$

et $Z_2 = \frac{ZR_2 \times Z_C}{ZR_2 + Z_C} = \frac{R_2 \times \frac{1}{1CW}}{R_2 + \frac{1}{1CW}} = \frac{R_2}{1 + \frac{1}{1}R_2CW}$

donc $\underline{AV} = -\frac{Z_2}{Z_1} = -\frac{R_2}{1+JR_2cw} \cdot \frac{1}{R_1} = -\frac{R_2}{1+JR_2cw} \cdot \frac{1}{1+JW_{WO}} = -\frac{R_2}{R_1} \cdot \frac{1}{1+JW_{WO}} =$


C'est donc un filtre pase-bas:


* Amplification marci Avo = -Re /R/ (le signe "-" signifie que vs et ve sont en appoi * R2C = 1 => W0 = R2C et fréquence de Conferre fo = W0 = 1 2TR2C

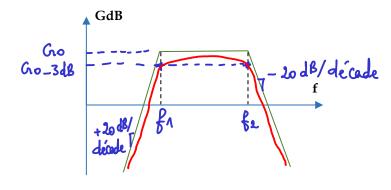

Filtre passe-haut

35 / 192

Filtre passe-bande

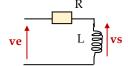
Par analogie aux mantages précoidents, il vrent : AV = - Ze

ower $Z_A = Z_{RA} + Z_{C} = R_1 + \frac{1}{1cw} = \frac{1+1}{1cw} \frac{R_1 C_W}{1cw}$ of $Z_A = Z_{RA} + Z_{C} = R_1 + \frac{1}{1cw} = \frac{1+1}{1cw} \frac{R_1 C_W}{1cw}$


done $Av = -\frac{Z_2}{Z_1} = \frac{R_2}{1 + \int R_2 C_2 w} \frac{\partial w}{1 + \int R_2 C_2 w}$

 $= -\frac{R_{0}}{R_{1}} \cdot \frac{1}{1+\sqrt{R_{1}C_{1}W}} \cdot \frac{1}{1+\sqrt{R_{1}C_{1}W}}$

C'est donc un passe-bande.


Amplification maxi Avo = - R

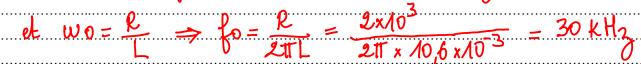
Fréquence de conjure basse $f_1 = \frac{1}{2\pi R_2 C_2}$ Fréq. de conjure hante $f_2 = \frac{1}{2\pi R_2 C_2}$

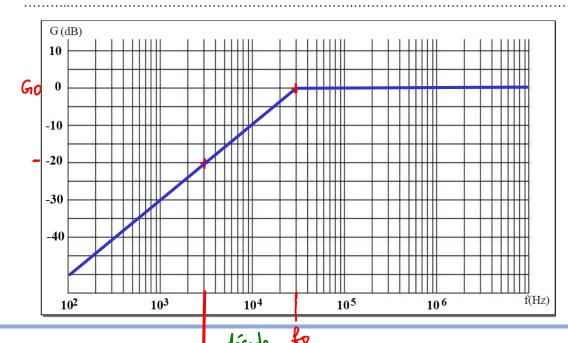
Exercice 1: filtre passe-haut passif

- 1. Déterminer la fonction de transfert complexe \underline{Av} et déduire le type du filtre ;
- 2. Calculer la fréquence de coupure f_0 et le gain maximal G_0 ; On donne $R = 2 k\Omega$ et L = 10,6 mH;

- 3. Esquisser le diagramme asymptotique du gain ;
- **4.** Calculer le gain G en dB pour f = 1 Khz.

1_ Par	diviseur	de tens	ion V	- Ve •	<u>Z</u> L
					/ 0 . 7
		7,			


done
$$AV = \frac{Vs}{Ve} = \frac{ZL}{ZR + ZL}$$


$$\frac{AV}{R} = \frac{JLW}{R} = \frac{JLW}{R} = AVO, \frac{JW}{WO}$$

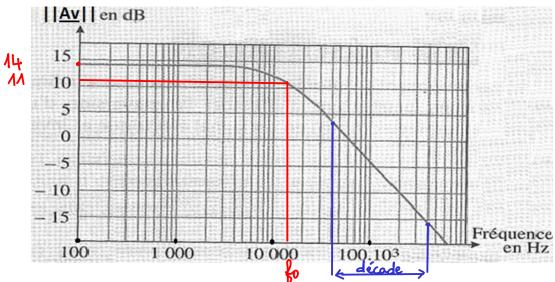
$$\frac{1+JLW}{R} = \frac{JLW}{R} = \frac{JLW}{R}$$

c'est un passe-haut

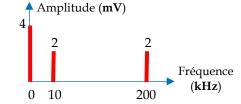
2- Par anglogie,
$$Ab = 1 \Rightarrow Go = 20 \cdot log 1 = 0 dB$$

Passe - haut

$$Av_0 = .1...$$


$$G_0 = \mathbf{0}.48$$

$$f_0 = 30. KH_3$$


décad

Exercice 2 : filtre passe-bas

La courbe suivante représente le diagramme de Bode d'un filtre passe-bas.

- 1. Déterminer graphiquement la valeur du gain statique G_0 dans la bande passante, la fréquence de coupure f_0 à -3dB et la **pente** de la droite après la fréquence de coupure.
- 2. On applique à ce filtre le signal $ve(t) = 4 + 2.sin(2\pi f_1 t) + 2.sin(2\pi f_2 t)$ dont voici ci-contre le spectre fréquentiel : (ve en mV, $f_1 = 10$ kHz et $f_2 = 200$ kHz)

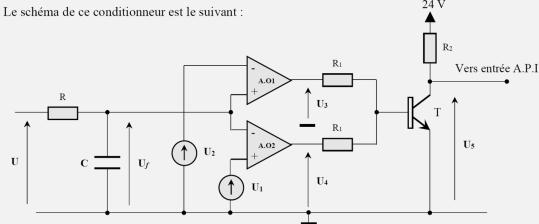
- Déterminer le gain en dB et l'amplification pour chacune des composantes de ve.
- Tracer le spectre du signal de sortie vs(t).

Pente = -16-4 dB/décade = -20 dB/décade

2/. * Pour la composante continue 4,
$$f = 0 Hz$$

on relève $G = 14 dB \Rightarrow A = 10 G/20 = 10$

- * Pour la composante sinusadale 2 sin w.t., $f_1 = 10 \text{ KHz}$ on relève $G_1 = 12 \text{ dB} \implies A_1 = 10 \frac{G/20}{2} = 10 \frac{12/20}{2} = 3,16$
- * Pour la composante sinusadale 2 sin wet, $f_2 = 200 \text{ kHz}$ on relève $G_1 = -10 \text{ dB} \implies A_2 = 10^{G/20} = 10^{-10/20} = 0,316$



Amplitude = 5x4=20V Amplitude 1 = 3,16x2 = 6,32V Amplitude 2 = 0,316x2 = 0,632

Exercice 3 : examen national 2020, session de rattrapage

Conditionnement du signal

Le circuit de conditionnement du signal de sortie du capteur à ultrasons est constitué d'un filtre, d'un comparateur à fenêtre et d'un adaptateur de tension.

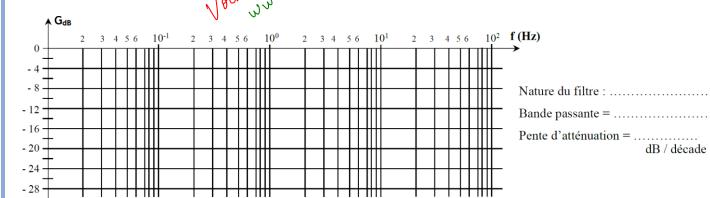
Afin de supprimer tout signal parasite, la fréquence de coupure à -3 dB du filtre RC est fixée à $f_0 = 0.5$ Hz.

Q39. Exprimer $\underline{A}v = \frac{\underline{v}f}{v}$ en fonction de R et $\underline{Z}c$ (Zc: impédance du condensateur C).

1 pt

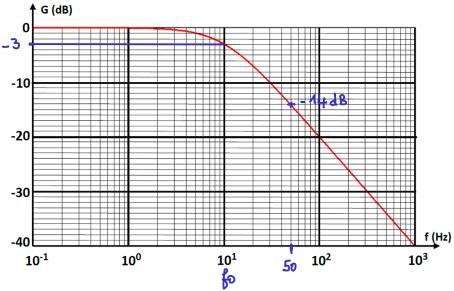
Q40. Mettre $\underline{A}v$ sous la forme $\underline{A}v = \frac{1}{1+j\frac{f}{f_0}}$ et exprimer f_0 en fonction de R et C.

2 pts


Q41. Pour $R = 100 \text{ k}\Omega$, calculer la capacité C du condensateur en μF .

1.5 pt

Q42. Tracer la courbe du gain (diagramme asymptotique). Donner la nature du filtre (passe-bas, passe-haut, passe-bande) et sa bande passante à -3 dB ainsi que sa pente d'atténuation.


3,5 pts

Jo god Josephanologo mary Joseph Josephanologo

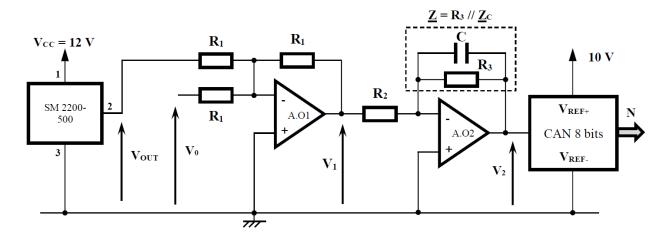
Exercice 4: examen national 2021, session normale

Le signal V_S issu de l'amplificateur d'instrumentation est appliqué à un filtre dont la courbe de gain est la suivante :

En vue d'identifier ce filtre,

Question: 40. Préciser son type (passe-bas, passe-haut ou passe-bande).

1 pt


Question : 41. Relever graphiquement le gain maximal G_{MAX} en dB du filtre, sa fréquence de coupure f_0 à -3 dB en Hz et sa pente en $dB/d\acute{e}cade$.

En vue de voir le comportement du filtre vis-à-vis d'un signal parasite de fréquence f = 50 Hz pouvant affecter la tension de sortie Vs:

Question: 42. Relever, sur la courbe, le gain G (en dB) attribué à ce signal parasite. En déduire l'amplification A qui correspond à ce signal (on rappelle que G = 20.log(A)).

40/ Pare bas
40/ Pare bas 41/ On releve Grax = 0 dB ; fo = 10 Hz pente = DG/ = -40-(-20) = 20 dB/décode
pente = DG/ = -40-(-e0) = 20 dB/décode
421 Graphiquement, G=-14dB pour f= 50Hz
$e = A = 10^{6/20} = 10^{-10/20} = 0.2$
$A = 10^{-10} = 10^{-10} = 0.2$

Exercice 5: examen national 2021, session de rattrapage

On donne : $C = 4.7 \mu F$, $R1 = 10 k\Omega$, $R2 = 10 k\Omega$ et R3 ajustée à $50 k\Omega$.

Le montage autour de l'AO2 permet de filtrer et d'amplifier le signal V_1 .

Q43- Sachant que
$$\underline{Z} = R_3 /\!/ \underline{Z}_C$$
, montrer que $\underline{Z} = \frac{R_3}{1 + jR_3.C.\omega}$

1 pt

Q44- Donner l'expression de la fonction de transfert du filtre $\underline{A} = \frac{\underline{v_2}}{v_1}$ en fonction de R_2 et \underline{Z} .

2 pts

Q45- Mettre l'expression de la fonction de transfert \underline{A} sous la forme $\underline{A} = \frac{A_{MAX}}{1+j\frac{f}{f_0}}$, en déduire les valeurs numériques de l'amplification maximale A_{MAX} et de la fréquence f_0 . Que représente la fréquence f_0 ?

Q46- Calculer le gain maximal G_{MAX} et le gain G_{θ} à $f = f_{\theta}$.

1 pt

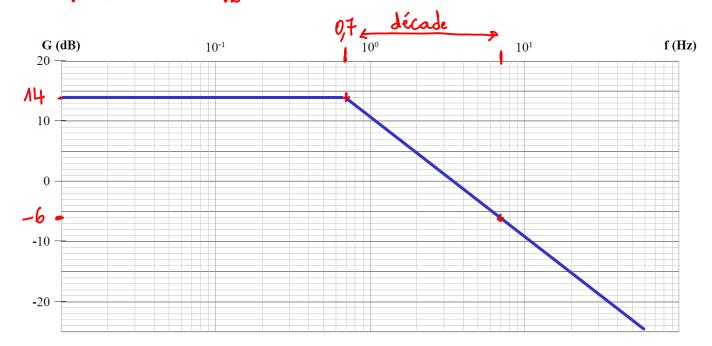
Q47- Tracer le diagramme asymptotique du gain (prendre $G_{MAX} = 14 \text{ dB}$ et $f_0 = 0,70 \text{ Hz}$). Préciser la nature du filtre (passe-bas, passe-haut, passe- bande) et donner sa bande passante.

$$\frac{43}{Z} = \frac{R3}{Zc} = \frac{R3 \cdot Zc}{R3 + Zc} = \frac{R3 \cdot \frac{1}{1c\omega}}{R3 + \frac{1}{1c\omega}} = \frac{R3}{1 + \frac{1}{4}R3C\omega}$$

$$\frac{44}{V} = \frac{V}{V} \Rightarrow \frac{V4}{R2} + \frac{V2}{Zc}$$

$$\frac{V}{R2} + \frac{V2}{Zc} = 0$$

$$\frac{V4}{R2} + \frac{V2}{Zc} = 0$$


$$\frac{V4}{R2} + \frac{V2}{Zc} = 0$$

 $\Rightarrow AV = \bigvee_{i=1}^{L} = -\bigvee_{i=1}^{L} = -\bigvee_{i=1}^{L}$

1+1R3 CW

46/. Gimox = 20. log Anax = 20. log 5 = 14 dB

Amplification $A = ||Av|| = \frac{||Amax||}{||A+f||} = \frac{Amax}{||A+f||}$ ot G = 20. log A = 20. log $\frac{Amax}{\sqrt{1+(f/f_0)^2}}$ Pour $f = f_0$, $G_0 = 20$. log $\frac{5}{\sqrt{2}} = 11dB$.

Nature du filtre : Passe - bas

Exercice 6 : examen national 2024, session de rattrapage

Tâche 2 : Étude du Filtre

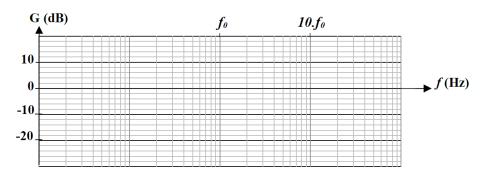
Pour réduire les parasites probables à la réception, on utilise un filtre **RC** dont la fonction de transfert est :

$$\underline{T} = \frac{1}{1 + jRC\omega}$$

Q38. Préciser la nature de ce filtre : passe-bas ou passe-haut.

1 pt

Q39. Déterminer le module T de la fonction de transfert de ce filtre en fonction de f et f_0 ; avec f_0 fréquence de coupure à -3 db. 2 pts


Q40. Monter que le gain G (en db) peut se mettre sous la forme suivante : $G = -10 \cdot \log \left(1 + \left(\frac{f}{f_0}\right)^2\right)$. 2 pts

Q41. Calculer le gain G pour f = 0, f = 10. f_0 et $f \to \infty$ et tracer le diagramme asymptotique G en fonction de 3,5 pts la fréquence **f** (Diagramme de Bode).

₽ V
Z**\
ρ_{σ}
······································
19.50
γ _α \μ
1 on we
,
a comment of the comm
• Y 1.
\.\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Q41.

Fréquence f	0	$10.f_0$	$f{ ightarrow}\infty$
Gain G (en dB)			

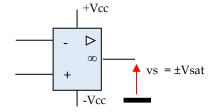
3

MISE EN FORME

Régimes de fonctionnement de l'amplificateur opérationnel

1. Régime linéaire

Ce régime se reconnaît lorsque la sortie est reliée à l'entrée "-" de l'AOP. On parle de contre réaction négative. Dans ce cas, v+ = v-


⇒ Exemples d'application du régime linéaire : fonctionnement en amplificateur, filtre.

2. Régime non linéaire (ou de saturation)

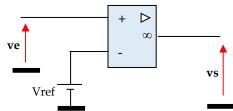
Ce régime se reconnaît lorsque la sortie est reliée à l'entrée "+" de l'AOP (contre réaction positive) ou lorsque l'AOP est en boucle ouverte.

La sortie de l'AOP ne peut prendre que 2 valeurs possibles :

+Vsat si v+ > v--Vsat si v+ < v-

Le **basculement** se produit à l'instant où **v+= v-**

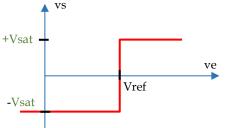
⇒ Exemple d'application du régime de saturation : fonctionnement en comparateur.


<u>Notes</u>

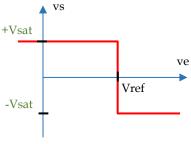
Si l'alimentation est symétrique c'est-à-dire par +Vcc et -Vcc, les tensions de saturation seront +Vsat et -Vsat; Si l'alimentation est simple c'est-à-dire par +Vcc et la masse, les tensions de saturation seront +Vsat et 0 V; La tension de saturation Vsat est presque égale à la tension d'alimentation de l'AOP; soit $Vsat \approx Vcc$.

Comparateur à un seul seuil

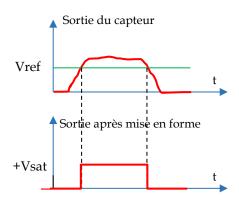
1. Comparateur non inverseur


On utilise un comparateur à base d'AOP en boucle ouverte. Le signal d'entrée ve est appliqué à l'entrée non inverseuse "+" de l'AOP

Deux cas sont possibles:


Si ve > Vref alors vs = +Vsat Si ve < Vref alors vs = -Vsat

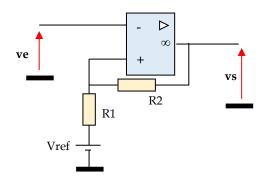
Caractéristique de transfert du comparateur



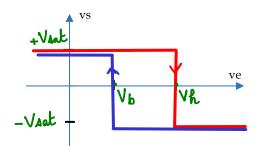
2. Comparateur inverseur

En appliquant ve à l'entrée inverseuse "-", on obtient un comparateur inverseur dont voici la caractéristique de transfert.

Application: mise en forme du signal d'un capteur



Comparateur à deux seuils


Lorsqu'on boucle la sortie sur l'entrée non inverseuse (réaction positive), on obtient un **comparateur à 2 seuils** dit aussi **comparateurs à hystérésis** ou encore **trigger de Schmitt**.

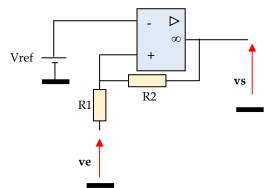
Le potentiel V+, auquel est comparée ve, commute entre 2 valeurs puisque la sortie prend 2 valeurs. Il apparaît donc deux seuils de basculement **Vh** et **Vb** (seuil haut et seuil bas).

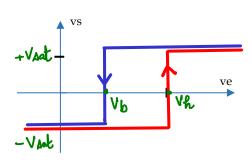
1. Trigger inverseur

Caractéristique de transfert

Calcul des seuils de basculement

V = Ve $V = \frac{Vs}{Rv} + \frac{Vref}{RA} = \frac{R_2 \cdot Vref}{RA + RA} \cdot Vs$ $\frac{1}{2} + \frac{1}{4} = \frac{R_2 \cdot Vref}{RA + R2}$


Au basculement, u+=u- => R2. Vref+ R1. Us = ve


R1+R2

* JS=+VAak, Je = Re Vref + R1 Vaak = Vh
R1+Re R1+Re

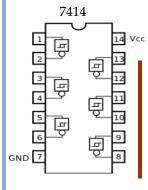
* JS=-VAat, Je = Re . Vref _ R1 . Vaat = Vb
R1+Re R1+Re

2. Trigger non inverseur

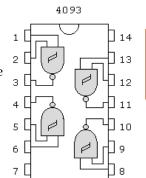
v - = Vref

et $V+ = \frac{\sqrt{5}}{R^2} + \frac{\sqrt{6}}{R^4} = \frac{R_2 \cdot \sqrt{6} + R_4 \cdot \sqrt{5}}{R_4 + R_2}$

Au basculement, += J - > Re. Je + R1. Js = Yref


=> re = R1+R2. Viel R1. JS

TS= +VARL, ve= R1+R2, VEB R2 VARL = Vb


* JS= -VAak, re= R1+Re. Vrf + R1. VAak = Vh.

.....

Réalisation à l'aide de circuits logiques

Le circuit intégré 7414 fait partie de la série des circuits intégrés 7400 utilisant la technologie TTL. Ce circuit est composé de six portes logiques indépendantes inverseuses avec trigger de Schmitt.

Le 4093 fonctionne comme un 4011 (quadruple NAND) dont toutes les entrées seraient dotées d'un trigger de Schmitt.

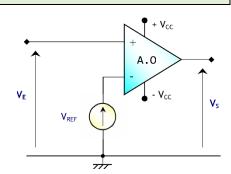
Exercices

Exercice 1: comparateur à un seuil

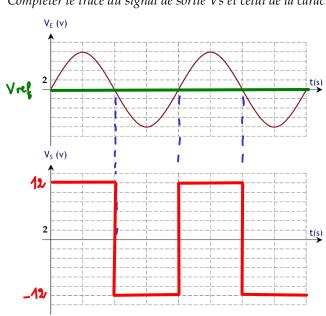
Le montage ci-contre est d'un comparateur ; L'entrée inverseuse est prise comme référence ; Le signal d'entrée V_E est appliqué à l'entrée non inverseuse ;

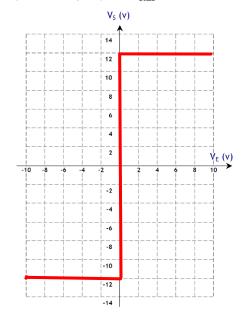
$$\pm Vcc = \pm 12 V$$
;

$$V_E(t) = 8.\sin(2\pi f.t)$$

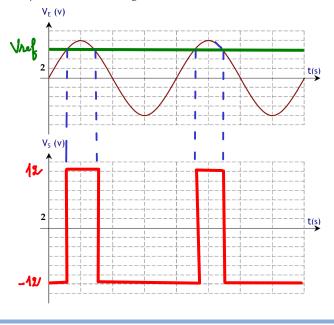


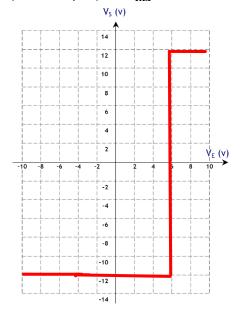
Compléter:


C'est un comparateur ... Aeul mon interseur.

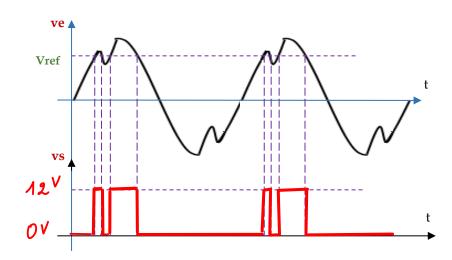

Pour
$$V_E < V_{REF}$$
 ... $V_S = -12V$

Pour $V_E > V_{REF}$... $V_S = -12V$

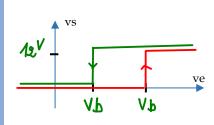


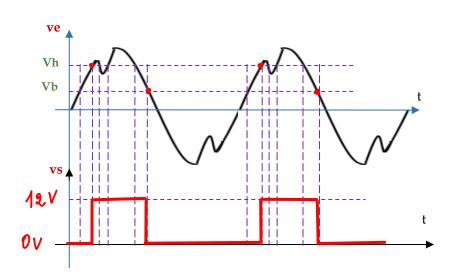

• Compléter le tracé du signal de sortie Vs et celui de la caractéristique de transfert pour $V_{\rm REF}$ = 0 V

• Compléter le tracé du signal de sortie Vs te celui de la caractéristique de transfert pour $V_{\rm REF}$ = 6 V

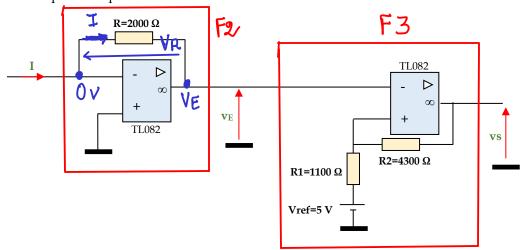

Exercice 2 : Avantage du trigger

Dans les deux cas, l'AOP est alimenté en **12 V** et **0 V**. L'entrée **ve** est un signal sinusoïdal bruité. Tracer la réponse **vs**.

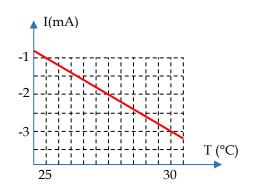

1er cas: comparateur à un seuil non inverseur


Si ve
$$<$$
 Vref, vs = \bigcirc \checkmark
Si ve $>$ Vref, vs = \bigcirc \checkmark

2e cas: trigger non inverseur


Conclusion: Le trig ger présente une immunité aux bruits: Ceux-a: n'affectent pas le signal de sortie.

Exercice 3 : régulation TOR de température


Soit la chaine fonctionnelle :

et le schéma électronique correspondant :

L'étude du capteur matérialisant la fonction F1 n'est pas demandée. On fournit, ci-contre, sa caractéristique de transfert.

Étude fonctionnelle

• Entourer sur le schéma les parties qui matérialisent les fonctions F2 et F3.

Étude de F2

Exprimer V_E en fonction de IMa $V_R = 0 - V_E = -V_E$ JOR $V_R = RI$ (Loi d'Ohm)

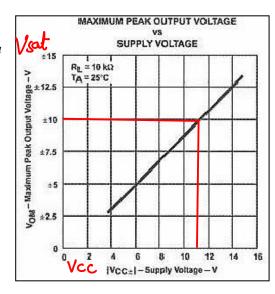
denc $V_E = -RI$

• Que vaut V_E pour les températures T = 25°C et T = 30°C?

. A T= 25°, on releve I=-1mA donc
$$VE=-RI=2000\times1\times10^3=2V$$

• A T= 30°C, on releve I=-3mA donc
$$VE=-RI=2000 \times 3 \times 10^{-3}=6 V$$

Étude de F3

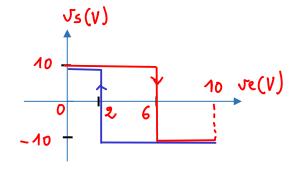

50 / 192

• Quel est le régime de fonctionnement de l'AOP ?

geme de saturation (non lineaire) vu la contre-réaction positive.

• Cet AOP est un TL082. D'après sa documentation technique, relever la valeur de Vsat (Maximum Peak Output Voltage), sachant qu'il est alimenté (Supply Voltage) sous ±11V.

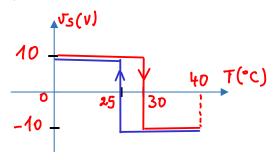
On releve, pour Vcc = 11V, Vsat = 10V

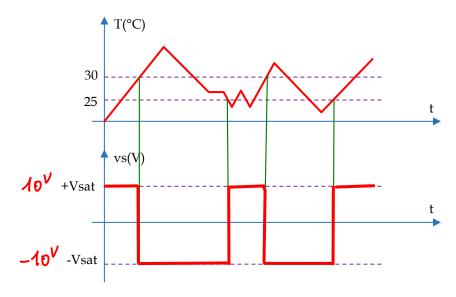

■ Donner les expressions des potentiels v+ et v-.

r-= ve et par le th. de Millman, v+=

• Déduire les valeurs des seuils de basculement V_{SH} et V_{SL} du comparateur.

---- Au moment du basculement, v- = v+ donc


Pows Us= -Vsat, ve=-Tracer le cycle d'hystérésis de $vs = f(V_E)$ pour V_E variant entre 0 et 10 V.

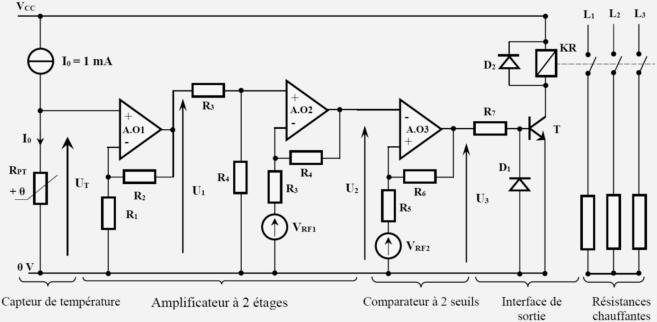

Étude de l'ensemble

• À quelle température correspond chacun des deux seuils de basculement?

D'après la partie "Etude de F2",

Compléter la courbe de la sortie **vs(t)**.

• Si la sortie **vs** commande le chauffage d'une pièce, expliquer le principe de la régulation de température dans cette pièce.


. Quand T atteint 30°C, vs=-10°, le système de chauffage s'arr · avant T descent à 25°C, vs = +10, le syst. de chauffage redémarre D'où la régulation.

Exercice 4: examen national 2020, session normale

Le mélange des produits s'effectue à une température comprise entre 60°C et 80°C.

Tâche 1 : Commande du circuit de chauffage

Le chauffage est assuré par 3 résistances chauffantes. La température est prélevée par le capteur **PT100** dont la résistance **R**PT varie avec la température. Le schéma de commande du dispositif de chauffage est le suivant :

On considère que :

- Les amplificateurs opérationnels sont parfaits avec \pm Vsat $= \pm$ V_{CC} $= \pm$ 15 V;
- Le générateur de courant fournit un courant $I_0 = 1 \text{ mA}$;
- V_{RF1} et V_{RF2} sont des tensions continues de référence.

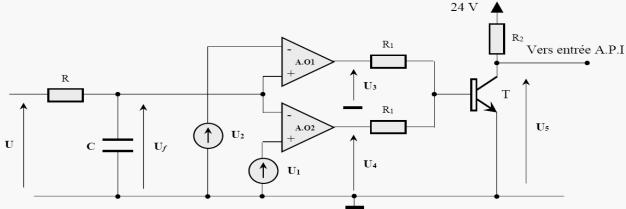
Étude du comparateur à 2 seuils (montage autour de AO3) :

Le comparateur à 2 seuils (**trigger inverseur**) agit de la façon suivante :

- Si la température est inférieure à 60 °C, le contacteur KR est fermé donc les résistances chauffantes sont alimentées et la température θ augmente;
- Si la température est supérieure à 80 °C, le contacteur KR est ouvert donc les résistances chauffantes ne sont plus alimentées et la température θ baisse.

On donne:

- $U_2 = 100.10^{-3}$. θ .
- $R_5 = 3.3 \text{ K}\Omega$
- L'expression du seuil haut du trigger : $V_{SH} = \frac{V_{RF2} \cdot R_6 + V_{CC} \cdot R_5}{R_6 + R_5}$
- L'expression du seuil bas du trigger : $V_{SL} = \frac{V_{RF2} \cdot R_6 V_{CC} \cdot R_5}{R_6 + R_5}$.

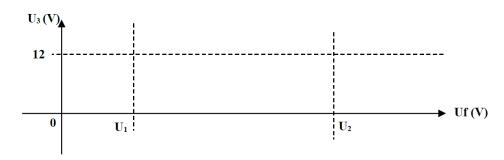

Q43- Calculer les valeur	rs des seuils $V_{S\!H}$ et	V_{SL} (le trigg	ger bascule à $oldsymbol{ heta}$ =	$80^{\circ}C \text{ et } \grave{a} \theta = 60^{\circ}C).$	2 pts	
Q44- Tracer la fonction de transfert du trigger U_3 en fonction de U_2 .						
Q45- Sachant que V_{SH} - V_{SL} = 2 V , calculer la valeur de la résistance R_6 .						
Q46- Sachant que V_{SH} +	Q46- Sachant que $V_{SH} + V_{SL} = 14 V$, calculer la valeur de la tension V_{RF2} .					
				- -		
		• • • • • • • • • • • • • • • • • • • •		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
			 چ	125		
			July albandon	mo ()	•••••	
		•••••		, n	•••••	
			Carlo Landon			
		.)				
Q44- [2 pts]	U_3	1/80	Jun			
	<u>↑</u>	!	!			
	+ Vcc					
	0					
		V _{SL}	VsH	\longrightarrow U ₂		
	V/22					
	- Vcc					
	•••••	•••••				
		•••••	• • • • • • • • • • • • • • • • • • • •		•••••	
		•••••			•••••	
					•••••	
		•••••	• • • • • • • • • • • • • • • • • • • •		•••••	

Exercice 5 : examen national 2020, session de rattrapage

Conditionnement du signal

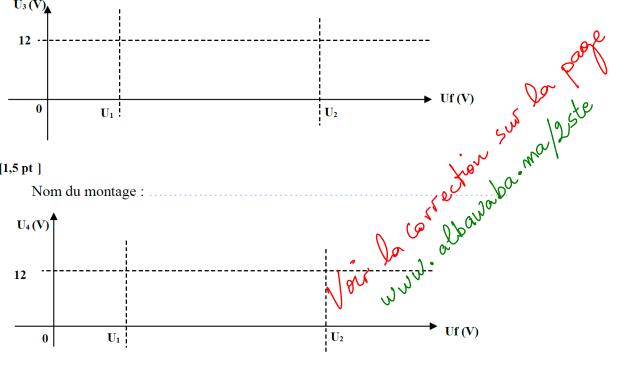
Le circuit de conditionnement du signal de sortie du capteur à ultrasons est constitué d'un filtre, d'un comparateur à fenêtre et d'un adaptateur de tension.

Le schéma de ce conditionneur est le suivant :


Le conditionneur (montage page 07) fournit une information logique lorsque la pièce à détecter se trouve à une distance du capteur comprise entre les distances limites **d1** et **d2**.

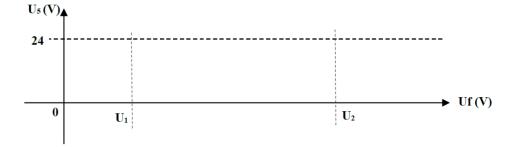
Les amplificateurs A.O1 et A.O2, ainsi que le transistor T sont considérés parfaits. On donne :

- Tensions de saturation des amplificateurs A.O1 et A.O2 : Vsat⁺ = 12 V et Vsat⁻ = 0 V
- Tensions de référence : $U_1 = 1.76 \text{ V}$ et $U_2 = 8.81 \text{ V}$
- Q43. Donner le nom du montage autour de l'A.01 et tracer sa caractéristique de transfert (U_3 en fonction de Uf).
- Q44. Donner le nom du montage autour de l'A.02 et tracer sa caractéristique de transfert (U_4 en fonction de Uf).
- Q45. Le transistor T fonctionne en commutation. Compléter le tableau des valeurs de U₅ pour les valeurs de U₃ et U₄.
- Q46. Tracer, à partir des deux graphes précédents, le graphe U5 en fonction de Uf.


Q43-[1,5 pt]

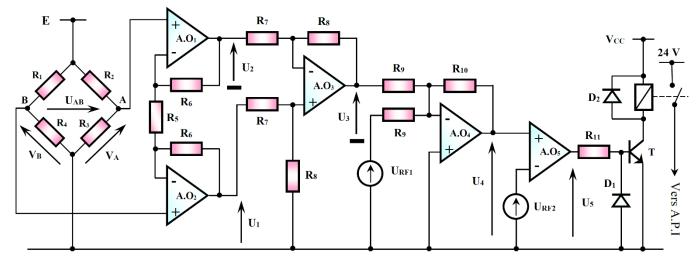
Nom du montage :

Q44-[1,5 pt]


Nom du montage :

Q45-[3 pts]

U ₃ (V)	U ₄ (V)	T (bloqué ou saturé)	U ₅ (V)
0	0		
0	12		
12	0		

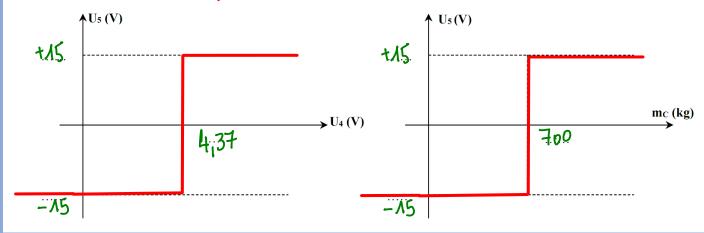

Q46-[1 pt]

Exercice 6 : examen national 2022, session normale

ATC/2e STE

Le montage ci-dessous représente le circuit de conditionnement du signal U_{AB} permettant d'informer l'A.P.I en cas de surcharge.

Les amplificateurs opérationnels sont supposés parfaits avec $\pm V_{SAT} = \pm V_{CC} = \pm 15 \text{ V}$.


$$U_4 = 2,02.\,10^{-3}.\frac{R_{10}}{R_9}.\,m_C \quad \text{et } R9 = \,22\,k\Omega$$

Q.45 - Sachant que le comparateur à seuil (montage autour de AO5) bascule lorsque la charge à déplacer m_C est supérieure à 700 kg et que $R_{10} = 68 \text{ k}\Omega$, calculer la valeur de la tension continue de référence U_{RF2} .

1,5 pt

Q.46 - Tracer la fonction de transfert du comparateur à seuil U_5 en fonction de U_4 , en déduire alors la caractéristique $U_5 = f(\mathbf{m}_C)$.

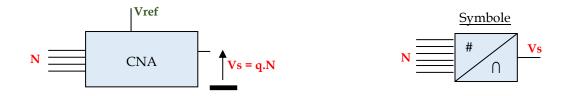
URF2 est le seul de basculement cad la valeur de U4 qui provoque le basculement. Le basculement se fait à mc = too kg donc a li4 = 2,02 x 10 3 R10 mc 14 = 2,02x 10-3. 68 x 700 = 4,37 V = LIRFE

4

CONVERTISSEURS


Les convertisseurs permettent de changer la nature d'une grandeur électrique. Ceux étudiés ici sont :

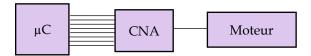
- Les convertisseurs analogique-numérique et numérique-analogique ;
- La convertisseurs **courant-tension** ;
- Les convertisseurs tension-fréquence et fréquence-tension.


Conversion numérique-analogique

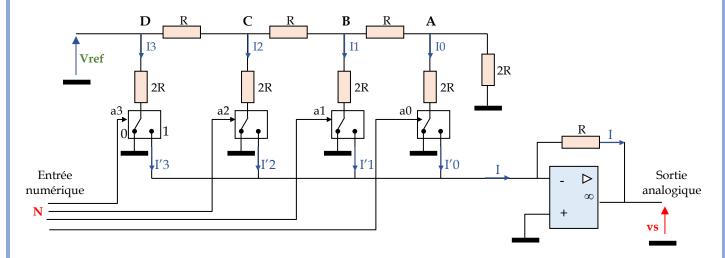
De plus en plus, les systèmes techniques utilisent la technologie numérique à base de microprocesseur du fait des avantages qu'elle présente.

Ainsi, lorsque les signaux issus des capteurs sont analogiques ou que les actionneurs doivent être commandés par des signaux analogiques, il est nécessaire de procéder à des conversions.

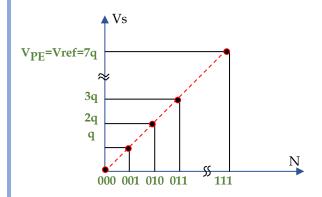
Un CNA transforme une valeur numérique (mot binaire) en une autre analogique (tension ou courant)



Vref: tension de référence


n: nombre de bits du convertisseur

q: quantum (ou résolution)


Application : variation de vitesse d'un moteur électrique par microcontrôleur

CNA à réseau R/2R

Caractéristique de transfert (cas de n = 3 bits)

Quantum q et fonction de transfert

Le quantum q est la plus petite variation de la tension de sortie vs; vs augmente donc de q lorsque N augmente de 1

$$q = \frac{V_{PE}}{2^n - 1} \qquad Vs = q.N$$

$$N \max = 2^n - 1$$

n : nombre de bits

 V_{PE} : tension pleine échelle (tension maximale que peut prendre la sortie), elle est fixée par Vref c'est à dire $V_{PE} = Vref$

On applique Vref = 8 V à un CNA 6 bits. Calculer Vs pour N = 100101, 001001 et 111111 Exercice 1

on a
$$q = \frac{Vref}{2^n - 1} = \frac{8}{2^6 - 1} = \frac{8}{63} V$$

$$+ N = (100 101)_2 = (37)_{10}$$
 et $5 = 9.N = \frac{8}{63}.37 = 4,7V$

$$N = (001001)_{2} = (9)_{10}$$
 et $VS = \frac{8}{63} \times 9 = 1,14 \text{ V}$
 $N = (111111)_{2} = N_{\text{max}}$ danc $VS = V_{PE} = V_{\text{ref}} = 8 \text{ V}$

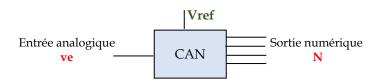
Exercice 2 Sachant que Vref = 10 V et que c'est CNA 8 bits, calculer Vs pour N = 10011001 et N = 00010110

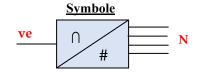
$$q = \frac{Vref}{2^{n}-1} = \frac{10}{2^{8}-1} = \frac{10}{255} = \frac{2}{51} V$$

$$+ N = (1001 \ 1001)_{L} = (153)_{10} \ j \ Vs = 9 \cdot N = \frac{2}{51} \cdot 153 = 6 V$$

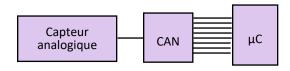
$$+ N = (0001 \ 0110)_{L} = (22)_{10} \ j \ Vs = \frac{2}{51} \cdot 22 = 0.86 V$$

$$_{\pm}$$
 N=(1001 1001)_L=(153)₁₀; $VS=9.N=\frac{2}{51}.153=6$

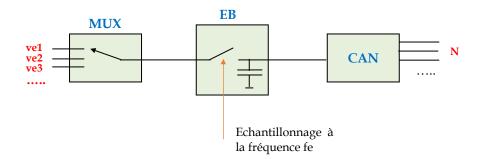

$$+ N = (0001 0110)_2 = (22)_{10}$$
; $vs = \frac{2}{51}.22 = 0.86 V$


Exercice 3

Quelle est la pleine échelle d'un CNA qui fournit vs = 1V pour N = 00010111?

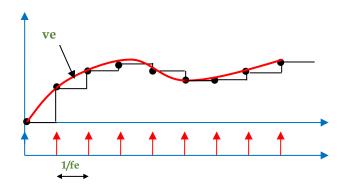

Conversion analogique-numérique

Le CAN permet d'obtenir en sortie une grandeur numérique codée sur n bits dont la valeur est représentative de la grandeur analogique présente à l'entrée.



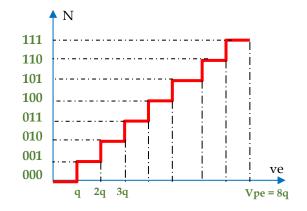
Application: traitement numérique du signal issu d'un capteur analogique

Chaîne de conversion


MUX: multiplexeur

Le multiplexeur est nécessaire lorsqu'il s'agit de convertir des signaux analogiques provenant de plusieurs sources. Il permet d'utiliser, en temps réel, un même convertisseur CAN.

EB: échantillonneur bloqueur


L'EB assure l'échantillonnage qui consiste à prélever, à divers instants, une valeur de l'entrée ve et la bloquer pour la conversion puisque celle-ci n'est pas instantanée.

- Le prélèvement d'un échantillon s'obtient par fermeture de l'interrupteur électronique ;
- Pendant que l'interrupteur s'ouvre, le condensateur conserve l'échantillon lors de la conversion.

fe : fréquence d'échantillonnage

Caractéristique de transfert (Cas de n=3 bits)

Quantum et fonction de transfert

Le quantum q est la plus petite variation de ve qui provoque une incrémentation du code numérique N de sortie.

$$q = \frac{V_{PE}}{2^n}$$
 Ve = q.N

q : quantum

n : nombre de bits

 V_{PE} : tension pleine échelle (tension maximale tolérée en entrée)

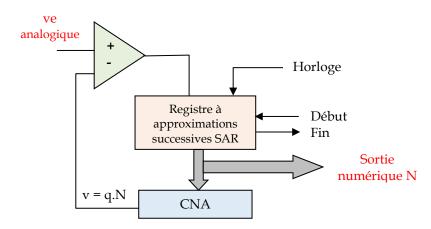
Exercice

On applique à l'entrée d'un CAN 8 bits une tension d'entrée ve = 7,224V, la tension de référence est de 10 V.

- **1.** Calculer le quantum
- 2. Déterminer, en décimal puis en binaire, le résultat N de la conversion

$$1/9 = \frac{\sqrt{nf}}{2^n} = \frac{10}{2^8} = \frac{10}{256} = \frac{5}{128} \vee$$

$$ve \simeq 185 = (1011 \ 1001)_2$$


⇒ CAN à approximations successives

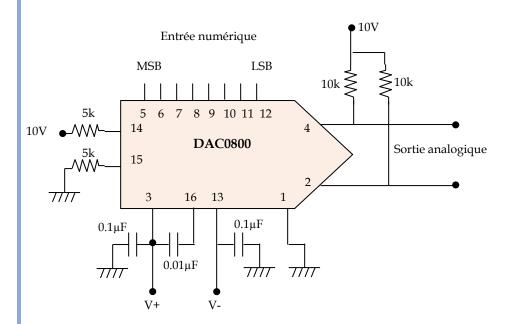
Principe

On teste bit après bit en commençant par celui de poids fort (MSB).

À chaque fois, la valeur N proposée est convertie par le CNA pour être comparée à ve.

- Si v ≤ve , le bit est conservé
- Si v>ve, le bit est rejeté

Exemple (cas de 8 bits)


- Au début, le registre SAR génère le mot 10000000. La tension v délivrée alors par le CNA est comparée à ve :
 - Si $v \le ve$, le SAR propose 11000000 (bit b7 conservé);
 - Si v > ve, le SAR propose **01**000000 (bit b7 rejeté).
- Supposons que v ≤ ve, le CNA reçoit 11000000 et v sera de nouveau comparée à l'entrée ve :
 - Si v ≤ ve, le SAR essaie 11100000 (bit b6 conservé);
 - Si v > ve, le SAR essaie 10100000 (bit b6 rejeté).
- Le cycle de comparaison se poursuit jusqu'au dernier bit.

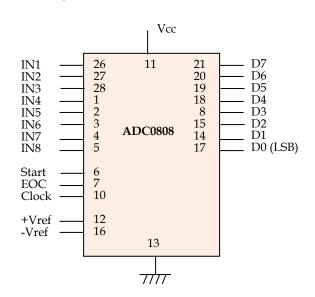
Exercice	N	v = q.N	Comparateur
CAN	1000 0000 1100 0000	1,28V .1,92.V	r>re r <re< th=""></re<>
Ve = 1,754V — q = 0,01 V 8 bits —	1010 0000	1,6V 1,76V	ve v>ve
	1010 1000	.1,.68.V.	ve
Résultat de la conversion40.404444	1010 1110 1010 1111	1,72V 1,74 V 1,35	ፓ ፈ ሃዩ ፓ ፈ ሃዩ ፓ ፈ ሃዩ
10210 1120			

Conversion analogique ↔ numérique Réalisation à l'aide de circuits intégrés

1. Le convertisseur numérique analogique DAC0800 de Motorola est un convertisseur 8 bits rapide. La tension de sortie peut atteindre 20 V.

Symbole et câblage minimal du DAC0800

MSB: bit du poids fort LSB: bit du poids faible


<u>Caractéristiques</u>

Temps de conversion : 100 ns Tension de sortie jusqu'à 20 V Alimentation de ±4.5 V à ±18 V Consommation: 33 mW à ±5 V

Coût modéré

2. Le convertisseur analogique numérique ADC0808 est un convertisseur à approximations successives 8 bits muni d'un multiplexeur 8 voies. Le CNA interne est à base du réseau R/2R.

Principales broches du ADC0808

IN1 ... IN8 : entrées analogiques multiplexées

D0...D7 : sortie numérique

Start et EOC : signaux de début et fin de conversion +Vref et -Vref : tensions de référence qui permettent de

fixer les valeurs min et max de l'entrée

Caractéristiques

Alimentation : Vccmax = 5 VFaible consommation: 15m W

Durée d'un cycle de conversion : 100 µs

Température de fonctionnement : -40 °C à +85 °C

Erreur: ± ½ LSB

Nombre de broches: 28

Exercice

Le microcontrôleur PIC 16F877 est doté d'un CAN qui permet de traiter des informations analogiques. Ce CAN a une résolution de **10 bits** et une tension de référence de **5V**.

• Calculer le quantum de ce convertisseur

$$q = \frac{Vref}{2n} = \frac{5}{2^{10}} = \frac{5}{1024}$$
 $Ve = q. N \implies N = \frac{\sqrt{e}}{9} = \frac{1024}{5} = N$

• Compléter ce tableau de conversion

ve(V)	N décimal	N binaire
vc(v)	14 decimal	512 256 128 64 32 16 8 4 2 1
1	204,8 205	0011 0011 01
		01/0 01/0 10
3	614,4 -> 614	1001 1001 10
4	819,2 - 819	1100 1100 11
5	1024 -> 1023	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

• Le convertisseur étant à approximations successives, compléter le tableau de conversion correspondant à l'entrée ve = 3V

512 256 128	N 64 32 16 8	4 2 1	v = q.N
1000	0000	0.0	2,5V
11.00	0000	0.0	3,75 V
10 10	0000	00	3,125 V
1001	0000	00	2,812 /
1001	1000	00	12,968V
1001	1100	60 0	3,046V
1001	1010	0.0	3,007V
1001	10 01	<i>0</i> 0	2,988 V
1001	1001	10	2,9981
1001	1001	11	3,002 V
			1

1 pt

Exercice: examen national 2019, session normale

Tâche 4 : Etude de la fonction FP4

On utilise un convertisseur analogique numérique (CAN) pour convertir la tension V4, image de la force F, en un signal numérique. On donne l'expression du nombre N résultat de la conversion en fonction de V_4 et du quantum $\mathbf{q} : \mathbf{N} = \mathbf{V}_4/\mathbf{q}$

Question: 40. Sachant que N = 200 pour $V_4 = 1$ V et que $N_{max} = 1023$, calculer la valeur pleine échelle PE $définie par PE = q.(N_{max} + 1)$; [2 pts]

Question: 41. Calculer la résolution numérique (nombre de bits) n du CAN. [2 pts]

i on man
G act John Da
Jan John John Jan Jan Jan Jan Jan Jan Jan Jan Jan Ja
" six " wing.
4

Exercice: examen national 2021, session de rattrapage

Numérisation:

La tension V₂ image du couple T est numérisée par un convertisseur analogique numérique (CAN 8 bits) avant d'être utilisée par l'A.P.I. On donne :

- La valeur numérique N de la conversion correspondante au couple T : $N = \frac{V_2 V_{REF}}{V_{DEE} V_{DEE}}$. 255 ;
- $\mathbf{V_{REF+}} = \mathbf{10} \ \mathbf{V} \ ; \ \mathbf{V_{REF-}} = \mathbf{0} \ \mathbf{V} \ ;$
- Pour les signaux de basse fréquence : $V_2 = 20.10^{-3}$. T (en Volt).

Q48- Calculer la résolution analogique q (quantum) de ce convertisseur en mV. Q49- Déterminer les valeurs N1 et N2 du mot N (valeurs en décimal) correspondantes aux couples :

 $T_1 = 240 \text{ N.m et } T_2 = 300 \text{ N.m.}$ 2 pts

Exercice: examen national 2024, session normale

Tâche 4: Numérisation du signal Us

La tension Us image de la position α du manche de la manette est numérisée par le convertisseur analogique numérique interne au **PIC 16F876**. On donne :

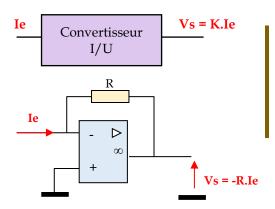
- La valeur numérique N de la conversion correspondante à α : $N = \frac{U_S}{5}$. 511 (conversion sur 9 bits);
- L'expression de la tension Us en fonction de α : Us = 0,1. α + 2,5 (en Volt).
- Q.44- Déterminer les valeurs de U_S correspondant aux positions $\alpha_1 = +12^\circ$ et $\alpha_2 = -12^\circ$.
- Q.45- En déduire les valeurs N1 et N2 du mot N (valeurs entières en base décimale) correspondant aux positions : $\alpha_1 = +12^{\circ}$ (montée du crochet) et $\alpha_2 = -12^{\circ}$ (descente du crochet).

ÉLABORATION DE LA COMMANDE DU VARIATEUR DE VITESSE DU MOTEUR DE LEVAGE

Le variateur de vitesse du moteur M1 est commandé par une tension U_C qui varie de 0 à 10 V, lorsque le manche de la manette est poussé vers l'extrémité (α varie de 0° à \pm 25°), par l'intermédiaire d'un convertisseur numérique/analogique (C.N.A à 8 bits) connecté au **PORTB** du microcontrôleur.

<u>Tâche 5</u>: Restitution du signal U_C « consigne de vitesse du moteur M1 »

Le nombre **N**_C (vitesse consigne) est calculé par le microcontrôleur et généré sur le **PORTB**, ce nombre est converti en tension **U**_C par le C.N.A représenté sur le document **DRES 03**.


On donne: $\mathbf{U_C} = \frac{\mathbf{U_{REF}}}{2^8}$. $\mathbf{N_C}$ Avec $\mathbf{N_C} = 2^7$. $\mathbf{RB_7} + 2^6$. $\mathbf{RB_6} + 2^5$. $\mathbf{RB_5} + 2^4$. $\mathbf{RB_4} + 2^3$. $\mathbf{RB_3} + 2^2$. $\mathbf{RB_2} + 2^1$. $\mathbf{RB_1} + 2^0$. $\mathbf{RB_0} = 2^7$.

Q.46-Calculer la valeur de la tension U_{REF} du C.N.A pour avoir $U_C = 10 \text{ V}$ à pleine échelle.

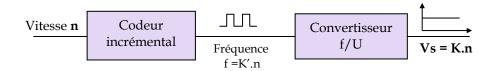
2 pts
Q.47-On admet que $U_C = 0.04.N_C$, calculer le nombre N_{Cm} (en décimal) permettant de sélectionner la vitesse minimale de déplacement du crochet correspondant à $U_C = 3 \text{ V}$.

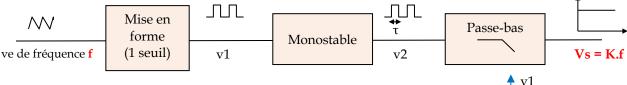
e P
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ja Le
\9.5°
· N/
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
O Openha po
Jo J. oborn
1 80 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$\sqrt{}$

Conversion courant-tension

Ce convertisseur fournit une tension proportionnelle au courant qu'il reçoit.

Il peut être utilisé pour obtenir une sortie tension à partir d'un circuit à sortie courant comme une photodiode, un CNA à sortie courant...

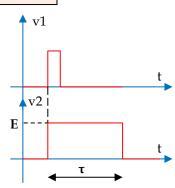

Conversion fréquence-tension

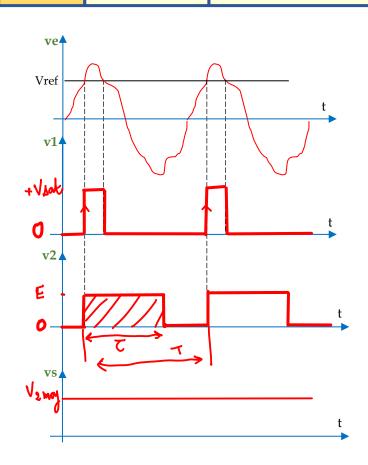

Permet de produire une tension continue proportionnelle à la fréquence du signal d'entrée.

Exemple d'application

Conversion en tension continue du signal en créneaux de sortie d'un codeur incrémental.

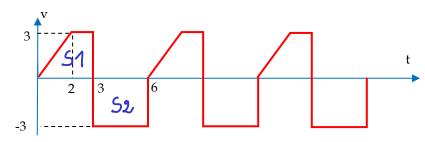
Principe




- Le $\underline{monostable}$ génère des impulsions calibrées de durée τ déterminée et d'amplitude E ;
- Le <u>filtre passe-bas</u> permet d'extraire la valeur moyenne du signal délivré par le monostable.

En effet selon la loi de Fourier, tout signal périodique est décomposable en sa composante continue et une série de composantes sinusoïdales.

$$V(t) = V moy + V_1.sin(2\pi f_1.t + \varphi_1) + V_2.sin(2\pi f_2.t + \varphi_2) + ...$$


Un filtre passe-bas de fréquence de coupure inférieure à la fréquence f_1 , laisse passer seule la valeur moyenne Vmoy (composante continue).

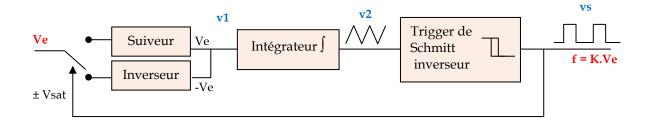
Vérification de la relation vs = K.f

Exemple de calcul de la valeur moyenne d'un signal périodique

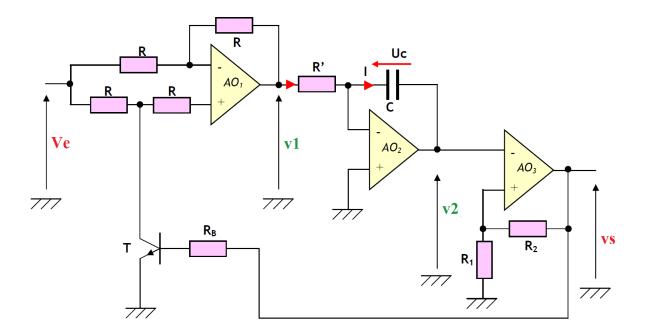
Vmoy = ZAires = S1-S2

 $\frac{\sqrt{b+B}h}{T} = \frac{(b+B)h}{2}$

 $V_{my} = \frac{1}{6} \left[\frac{(1+3)3}{2} - 3x3 \right] = \frac{1}{6} \left(6 - 9 \right) = -\frac{1}{2} V$

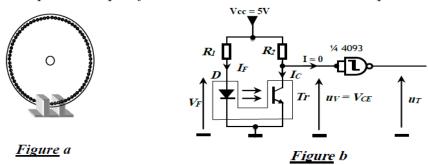

Conversion tension-fréquence

Cette conversion permet de produire un signal périodique de fréquence proportionnelle à la tension d'entée.


Application : réglage de la fréquence d'un générateur de signaux

⇒ Synoptique de la conversion

⇒ Exemple de réalisation



Exercice: examen national 2018, session de rattrapage

Tâche 3 : Mesure de la vitesse

La vitesse de rotation du moteur est acquise au moyen d'un codeur optique incrémental qui génère un signal carré de fréquence proportionnelle à la vitesse du moteur. Ce codeur est constitué :

- D'un disque comportant 72 trous (figure a) et fixé sur l'arbre de sortie du réducteur;
- D'un détecteur optoélectronique à fourche lié au bâti et alimenté comme indiqué dans la figure **b**.

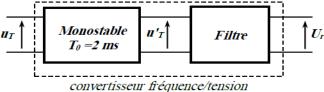
Les éléments du détecteur ont pour caractéristiques principales:

- Intensité du courant dans la diode électroluminescente : $I_F = 20 \text{ mA}$;
- Tension aux bornes de la diode **D** électroluminescente : $V_F = 1,5 V$;
- Intensité maximale du courant dans le collecteur du phototransistor Tr lorsqu'il est saturé : $I_{CMAX} = 0.5 \text{ mA}$;
- Tension V_{CESAT} entre le collecteur et l'émetteur du phototransistor Tr lorsqu'il est saturé : $V_{CESAT} \approx 0 V$.
- **Q31)** Calculer les valeurs des résistances R_1 et R_2 .

4 pts

Q32) Suivant l'état du phototransistor (saturé ou bloqué), donner la valeur de la tension \mathbf{u}_V en volts.

1 pt


Q33) On admet que la fréquence f du signal u_V est liée à la vitesse N_d du disque du codeur par la relation :

 $f = R \cdot N_d$ où R = 72 (résolution du codeur) et N_d étant en tr/s.

Montrer que la fréquence f du signal u_V est liée à la vitesse du moteur N_{mot} (tr/min) par : $f = \frac{N_{mot}}{60} \cdot K \cdot R$ où K = 1/25 est le rapport de réduction. 2 pts

Q34) Sachant que la vitesse du moteur N_{mot} varie entre 200 et 4000 tr/min, calculer alors les fréquences f_{min} et fmax correspondantes. 2 pts

Après la mise en forme du signal u_V , le signal u_T est appliqué à l'entrée d'un convertisseur fréquence/tension constitué d'un monostable suivi d'un filtre comme l'indique la figure suivante :

Le monostable génère une impulsion de 2 ms à chaque front montant de u_T .

Les chronogrammes des signaux u_T et u'_T sont représentés sur le document DRES 04.

On admet pour la suite que la fréquence f du signal u_T varie entre $f_{min} = 10$ Hz et $f_{max} = 200$ Hz.

Q35) Exprimer U'_{Tmoy} (valeur moyenne de u'_{T}) en fonction de f.

Q36) La tension u'_T peut être considérée comme la somme d'une composante continue U'_{Tmoy} (de fréquence nulle) et de plusieurs tensions sinusoïdales dont les fréquences sont supérieures ou égales à la fréquence f.

Quel est le type de filtre (passe-bas, passe-haut ou passe-bande) qui convient pour avoir une tension continue $U_r = U'_{Tmov}$? 1 pt

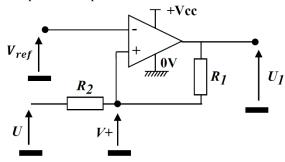
Q37) Calculer alors $U_{r min}$ et $U_{r max}$ de la tension U_{r} correspondantes respectivement à f_{min} et à f_{max} .
Q38) La tension U_r image de la vitesse est convertie par le module CAN (Convertisseur Analogique Numérique) intégré au microcontrôleur (voir schéma structurel du document DRES 04). La valeur numérique N de la conversion est donnée par la relation suivante :
$N = 255 \cdot \frac{U_r - V_{REF-}}{V_{REF+} - V_{REF-}}$ avec U_r est la tension à convertir, V_{REF+} et V_{REF-} sont des tensions de référence.
Sachant que $V_{REF+} = 5$ V et $V_{REF-} = 0$ V, calculer les deux valeurs numériques N_1 et N_2 de N correspondantes respectivement à f_{min} et à f_{max} .
0.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Ve
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
· N May
Jan Juli

## Exercice: examen national 2022, session de rattrapage

#### **⇒** Conditionnement

Le circuit de conditionnement du signal du capteur est conçu à base d'un convertisseur **fréquence-tension** et délivre une tension continue  $u_S$  proportionnelle à la vitesse de rotation n du moteur.

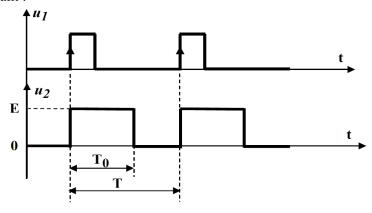
Voici, ci-dessous, une présentation synoptique du principe de la conversion fréquence-tension :




### Mise en forme

Le circuit de mise en forme est un comparateur à deux seuils (trigger non inverseur) à base d'amplificateur opérationnel.

On admet que l'amplificateur opérationnel est parfait et que ses tensions de saturation sont +Vcc et 0 V.


**Vref** est une tension de référence continue positive



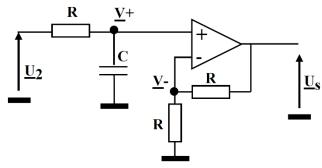
- Q.36) Donner l'expression de V+ en fonction de U,  $U_1$ ,  $R_1$  et  $R_2$ ;
- Q.37) En déduire que, au moment du basculement,  $U=\frac{(R_1+R_2)}{R_1}$ .  $V_{ref}-\frac{R_2}{R_1}$ .  $U_1$ ;
- Q.38) En déduire les expressions des seuils de basculement  $V_B$  (seuil bas) et  $V_H$  (seuil haut) ;
- Q.39) Compléter le tracé de la caractéristique de transfert  $u_1 = f(u)$  en indiquant les sens d'évolution;
- Q.40) Tracer la courbe  $u_1(t)$  en concordance de temps avec le signal u(t) fourni.

## <u>Monostable</u>

Le circuit monostable génère à sa sortie une impulsion de durée calibrée  $T_0$  et d'amplitude E à chaque fois qu'il reçoit un front sur son entrée. Les chronogrammes suivants illustrent la réponse  $u_2$  d'un monostable actif sur le front montant :



Q.41) Montrer que l'expression de la valeur moyenne (composante continue) de  $u_2$  est  $U_{2moy} = E.T_0.f$  (f: fréquence du signal  $u_2$ ).


### Filtre moyenneur

Le filtre a pour fonction d'extraire seule la valeur moyenne du signal  $u_2$  issu du monostable (la valeur moyenne étant la composante continue de fréquence 0 Hz).

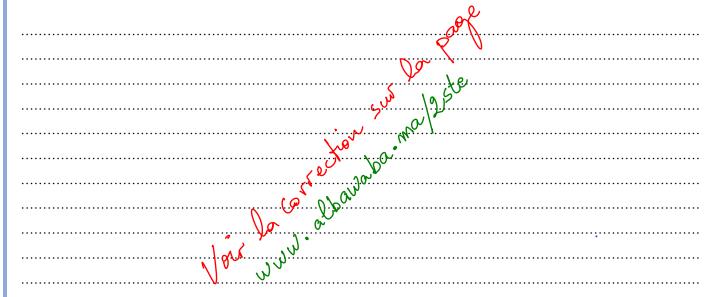
Q.42) Quel type de filtre (passe-bas, passe-haut ou passe-bande) faut-il utiliser?



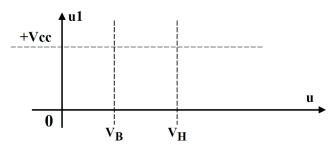
Le schéma du montage du filtre est le suivant :



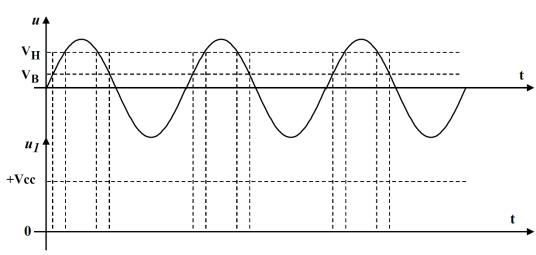
- Q.43) Donner les expressions complexes du potentiel  $\underline{\mathbf{V}}^+$  en fonction de  $\mathbf{R}$ ,  $\mathbf{C}$  et  $\underline{\mathbf{U}}_2$  et du potentiel  $\underline{\mathbf{V}}^-$  en fonction de  $\underline{\mathbf{U}}$ s;
- Q.44) En déduire que la fonction de transfert complexe  $\underline{A}_V = \frac{\underline{U}_S}{\underline{U}_2}$  du filtre s'écrit  $\underline{A}_V = \frac{2}{1+jRC\omega}$ ;




La fonction de transfert ainsi déterminée est de la forme  $\underline{A}V = A_0 \cdot (\frac{1}{1 + \frac{j\omega}{\omega^0}})$ .

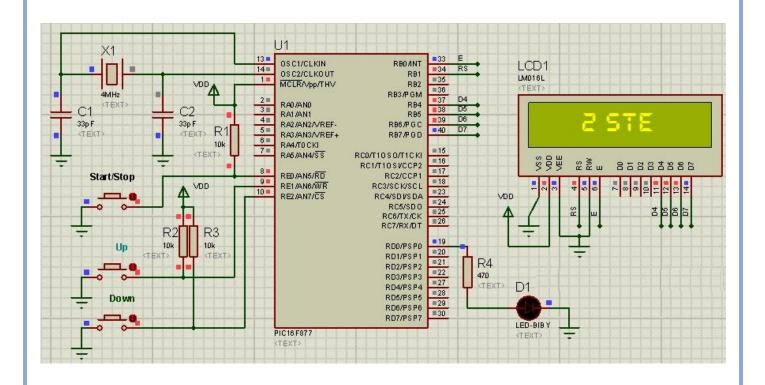

Q.45) Préciser, par analogie, la valeur de l'amplification maximale  $A_0$  ainsi que l'expression de la fréquence de coupure  $f_0$  à -3 dB; puis calculer, pour R=2 k $\Omega$  et C=15  $\mu F$ , la valeur de  $f_0$ . On donne les caractéristiques du monostable :  $T_0=1$  ms et E=5 V.




Q.46) Déterminer la valeur de la tension de sortie  $U_s$  lorsque le moteur tourne à la vitesse n = 1475 tr/min sachant qu'à cette vitesse, la fréquence du signal de sortie du capteur est f = 492 Hz.



Q.39)




Q.40)





# La fonction TRAITER



5

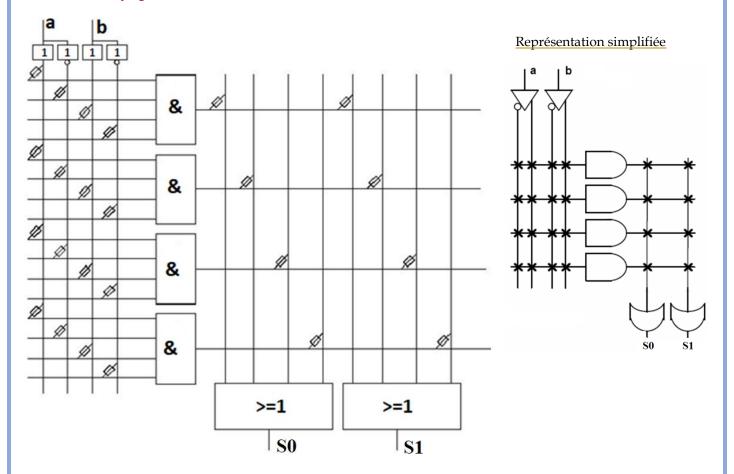
# CIRCUITS LOGIQUES PROGRAMMABLES

Un circuit logique programmable PLD (Programmable Logic Device) est un composant logique dont on peut programmer le schéma selon la fonction souhaitée, combinatoire et/ou séquentielle.

Il apporte un gain dans la mesure où:

- Un seul circuit peut remplacer plusieurs ;
- La taille et le coût de la fonction implantée sont moindres.

#### Architecture d'un PLD

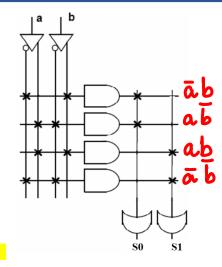

Toute fonction logique peut être réalisée par seules les portes logiques fondamentales ET, OU et NON. Un PLD est bâti autour de ce concept.

La plupart des PLD adoptent l'architecture suivante :

- Une matrice d'opérateurs ET sur lesquels viennent se connecter les variables d'entrée;
- Une matrice d'opérateurs OU sur lesquels les sorties des opérateurs ET sont connectées ;
- Une éventuelle structure de sortie (Portes inverseuses, bascules...).

Schéma de principe très simplifié (cas d'un PLD à 2 entrées et 2 sorties combinatoires)

⇒ Avant la programmation




#### 

Les fonctions programmées ci-contre sont :

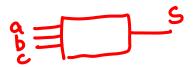
$$S0 = \overline{a}b + a\overline{b}$$

$$S1 = ab + \overline{a}b$$

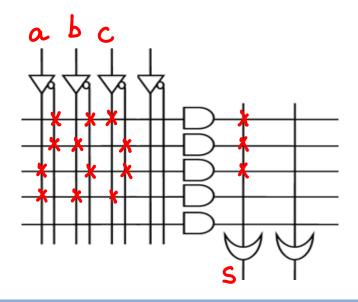


#### Exercice : générateur de parité à 3 entrées

S = 1 si le nombre de 1 à l'entrée est impair ;

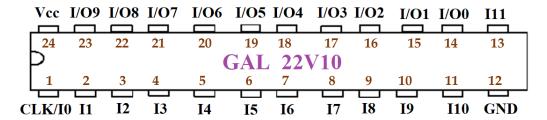

S = 0 sinon.

#### *Table de vérité*


a	b	С	S
0	0	0	. <b>.O</b> .
0	0	1	.4
0	1	0	4
0	1	1	. <b>O</b>
1	0	0	. <b>1</b>
1	0	1	. <b>O</b> .
1	1	0	. <b>O</b>
1	1	1	.1

# Équation

s= <u>abc+abc+abc+abc</u>



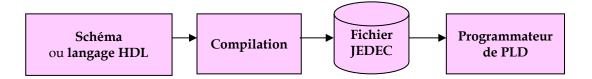

#### État du PLD après programmation



#### Le GAL 22V10

Avec les évolutions techniques actuelles, les PLD sont de plus en plus rapides, à plus grand nombre d'E/S, effaçables et reprogrammables ; on trouve alors différents types de PLD : PAL, GAL, CPLD, FPGA...




La désignation 22V10 signifie que le composant dispose de 22 entrées et 10 sorties possibles. Chaque broche output émane d'une cellule OLMC (Output Logic MacroCell) qui définit par programme la configuration de la sortie : combinatoire ou séquentielle, normale ou complémentaire.

#### Programmation des PLD: langage Abel

La programmation des PLD nécessite un programmateur, un PC et un logiciel adapté. Souvent le logiciel offre la possibilité de décrire la fonction à réaliser :

- Soit par schéma;
- Soit syntaxiquement moyennant un langage de programmation HDL : **ABEL**, VHDL, VERILOG...

Lorsqu'il est terminé, le fichier de description (schéma ou programme) doit être compilé pour être traduit en format JEDEC, c'est un fichier contenant des 0 et des 1 signifiant les croisements de fils qui seront détruits et les autres qui seront maintenus. C'est ce fichier JEDEC qui est transféré au PLD via le programmateur.



Voici un exemple de programme **Abel** et le **Jedec** correspondant :

module test
Declarations
test device 'P22V10';
a,b pin 2,3;
s1,s2 pin 14,15 istype 'com';
Equations
s1 = a # b;
s2 = !a;
end test

#### Structure d'un programme ABEL

ATC/2e STE

#### On v trouve:

- La section d'entête → module, title;
- La section des déclarations → declarations (device, E/S, bus...);
- La section de description → equations, truth table, state diagram;
- La déclaration de fin du fichier → end.

#### **Déclarations**

Pin: permet d'affecter une broche d'E/S à une variable.

#### **Exemples**

```
e1, e2, A1 pin 2, 3, 4;
                           : entrées affectées aux broches 2,3 et 4
d4 pin;
                           : entrée sans désignation de numéro de broche
s1 pin 12 istype 'com';
                           : sortie combinatoire associée à la broche 12
S0..S6 pin istype 'com';
                           : sorties combinatoires
S1 pin istype 'reg';
                            : sortie séquentielle
```

On peut déclarer un bus ; il s'agit d'un ensemble de variables

```
N = [D2, D1, D0];
Exemples A = [b7..b0];
          L'affectation N = 5 entraı̂ne D2 = 1, D1 = 0 et D0 = 1.
```

### **Opérateurs**

#### Opérateurs logiques

- NON !
- æ ET
- OU
- OU exclusif

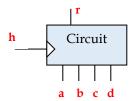
#### *Opérateurs relationnels*

- Egal
- != Différent
- Inférieur <
- Inférieur ou égal <=
- > Supérieur
- Supérieur ou égal

#### Opérateurs arithmétiques

- négation ou soustraction
- + Addition
- Multiplication
- Division
- Reste de la division

#### Instructions d'affectation et de test


S = a & !b # !a & b;affectation pour une sortie combinatoire (symbole = ) A0 := !D1 & A0 & !D7;affectation pour une sortie séquentielle (symbole := ) X = a < bX reçoit 1 si a < b et X reçoit 0 sinon

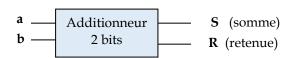
La structure conditionnelle WHEN (condition) THEN équation1 ; ELSE équation2 ; when (E1 == 0) then S = a # b; else S = a \$ b; <u>Exemple</u>

#### **Extensions**

Les pins peuvent être suivis d'une extension leur associant une fonction particulière.

.CLK: Entrée horloge.D : Entrée D d'une bascule D.AR : Reset asynchrone.J : Entrée J d'une bascule JK.OE : Output Enable.K : Entrée K d'une bascule JK .CLK: Entrée horloge .D: Entrée D d'une bascule D




Dans cet exemple, on déclare que :

- L'entrée **h** est l'horloge des bascules de sortie ;
- L'entrée **r** effectue une mise à 0 asynchrone des sorties.

```
..
Declarations
h, r pin;
a, b, c, d pin istype 'reg';
S = [a, b, c, d];
Equations
S.CLK = h;
S.AR = r;
..
```

#### **Exercices**

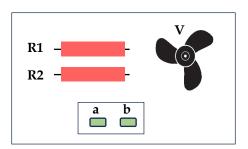
#### Exercice : additionneur 2 bits



# a b S R 0 0 0... 0... 0 1 ... ... 1 0 ... ... 1 1 ... ...

#### Description par la table de vérité

# 


#### Description par les équations logiques



#### Exercice : radiateur de chauffage électrique

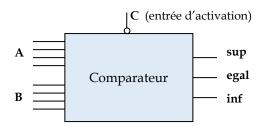
Le système de chauffage est équipé d'un radiateur électrique à deux allures de chauffe, comportant deux résistances  $\mathbf{R1}$  et  $\mathbf{R2}$  et un ventilateur  $\mathbf{V}$ . Il est commandé par deux interrupteurs  $\mathbf{a}$  et  $\mathbf{b}$ .

- Par action sur **a** seul, la résistance **R1** seule est mise sous-tension ;
- Par action sur **b** seul ou sur **a** et **b** à la fois, les **deux résistances** et le **ventilateur** sont mis sous-tension.



```
module ... radiateur
Declarations

radiateur device / P22/10';
a,b. pin...;
R1, R2, V. pin. wtype 'Com';


Truth_Table (.[a,b]..., [R1,R2,V.]..)
[0,0]..., [0,0,0];
[1,0]..., [1,1,1];
[1,0]..., [1,1,1];
End . radiateur
```

#### Exercice: comparateur 4 bits

```
sup = 1 si A>B

inf = 1 si A<B

egal = 1 si A=B
```



```
module comparateur

Declarations

Comparateur device P22VAO;

a.3. a.4. a.1. a.2. b.3. b.2. b.1. b.0. c pin;

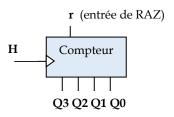
Sup., egal., unf. pin. istype 'Com';

A = [.a.3...a.2].; B = [.b.3...b.2];

S = [.a.up., egal., unf.];

Equations

S. OE = [C...


when (A>B) then sup = 1; else sup = 0;

when (A<B) then inf. = 1; else inf. = 0;

when (A=B) then egal. = 1; else egal. = 0;

End. Comparateur
```

#### Exercice : compteur 4 bits avec mise à 0 asynchrone



```
module ... Compteur
Declarations

Compteur device P22V10;

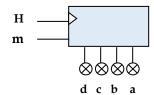
T, H. pin.;

93, 92, 94, 90 pin. whype REG;

Q = [93...90.];

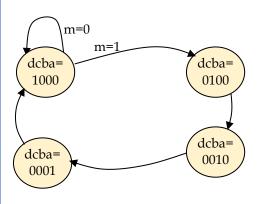
equations

Q. CLK = H.;


Q. AR = T.;

End . Compteur.
```

#### Exercice: chenillard à 4 LED


Au départ la Led **d** est allumée.

L'appui sur le bouton **m** lance une séquence de défilements vers la droite.



Le diagramme d'état est une représentation symbolique de l'enchaînement séquentiel des états de sortie d'un système.

Le diagramme d'état suivant illustre le cycle d'allumage désiré :



```
Module chenillard

DECLARATIONS

chenillard device 'P22V10';

H, m...pin..j...

d, C, b, a...pin utype reg;

S=[d, C, b, a];

EQUATIONS

S...CLK.=.H;

STATE_DIAGRAM .....S...

State [1,0,0,0]: IF (m==1) THEN goto [0,1,0,0]; else goto [1,0,0,0];

state [0,1,0,0]: goto [0,0,1,0];

state [0,0,1,0]: goto [0,0,0,1];

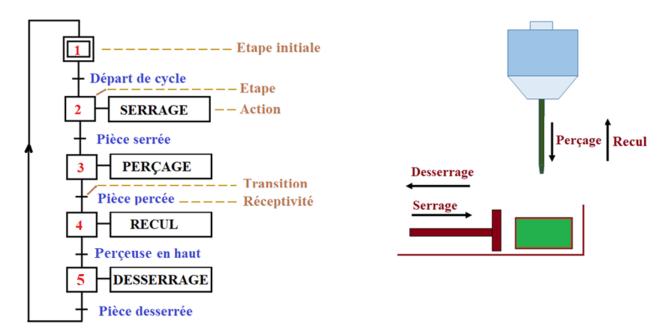
state [0,0,0,1]: goto [1,0,0,0];

END chenillard
```

6

# **GRAFCET**

# Rappel


Le GRAFCET (Graphe Fonctionnel de Commande Étapes-Transitions) ou diagramme fonctionnel :

- ⇒ Est un outil de représentation du fonctionnement des systèmes automatisés séquentiels ;
- ⇒ Est un langage de programmation des automates programmables (API).

#### 1. Concepts

Le GRAFCET décrit les cycles de fonctionnement par une succession d'étapes, de transitions et de liaisons orientées. Aux étapes, sont associées des actions et aux transitions, des réceptivités.

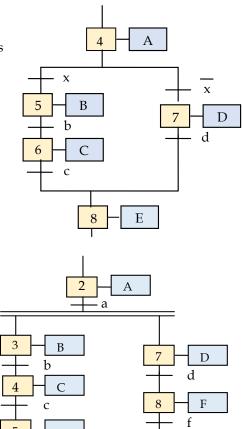
#### Exemple:



#### Évolution du grafcet

- L'étape 1 est initialement active ;
- Lorsque la réceptivité "départ de cycle" est vraie, la transition correspondante "1-2" est franchie ce qui provoque l'activation de l'étape 2 qui alors provoque la désactivation de l'étape 1;
- Pendant que l'étape 2 est active, se déroule l'action correspondante "SERRAGE " et si la réceptivité "pièce serrée" devient vraie, l'étape 3 s'active et l'étape 2 se désactive et ainsi de suite.

#### 2. Structures du GRAFCET


#### On distingue:

- GRAFCET à séquence unique (linéaire) ;
- GRAFCET à séquences multiples :
  - GRAFCET à sélection de séquences : séquences exclusives, saut d'étapes, reprise d'étapes ;
  - GRAFCET à séquences simultanées.

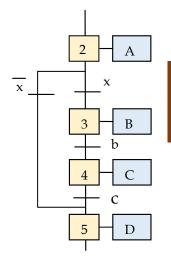
#### <u>Séquences exclusives</u> (aiguillage en OU)

Permet d'effectuer un choix unique d'évolution entre plusieurs séquences d'étapes.

Ici, il y a sélection entre la séquence 4-5-6-8 et la séquence 4-7-8 selon l'état de la réceptivité **x**.



#### Séquences simultanées (aiguillage en ET)

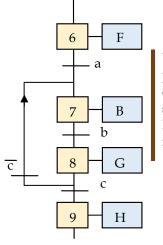

Le franchissement d'une transition conduit à activer simultanément plusieurs séquences d'étapes qui s'exécuteront parallèlement mais indépendamment.

Ici, le franchissement de la transition "a" conduit à l'exécution simultanée des séquences 3-4-5-6 et 7-8-9.

Les séquences 3-4-5-6 et 7-8-9 évoluent indépendamment : par exemple, il n'est pas nécessaire que les étapes 4 et 8 s'activent en même temps.

Les étapes 6 et 9 sont des étapes d'attente. Une fois toutes les deux actives, l'étape 10 s'active immédiatement.

#### Saut d'étapes




Le saut d'étapes est un saut conditionnel d'une séquence d'étapes.

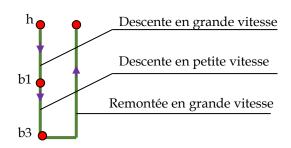
Ici, il a y saut de la séquence 3-4 si x = 0.

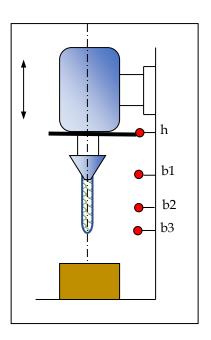
#### Reprise d'étapes

b



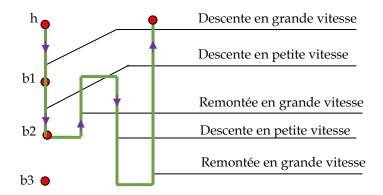
La reprise d'étapes permet de reprendre une ou plusieurs fois la même séquence.


Ici, la séquence 7-8 est répétée tant que c = 0.


#### Exercice: perceuse automatique

Suivant la nature des pièces, l'opérateur de la perceuse peut choisir entre deux modes : le perçage avec débourrage ou sans débourrage.

Établir le GRAFCET du point de vue partie commande. (La commande de la rotation de la broche n'est pas prise en compte)


# Cycle sans débourrage





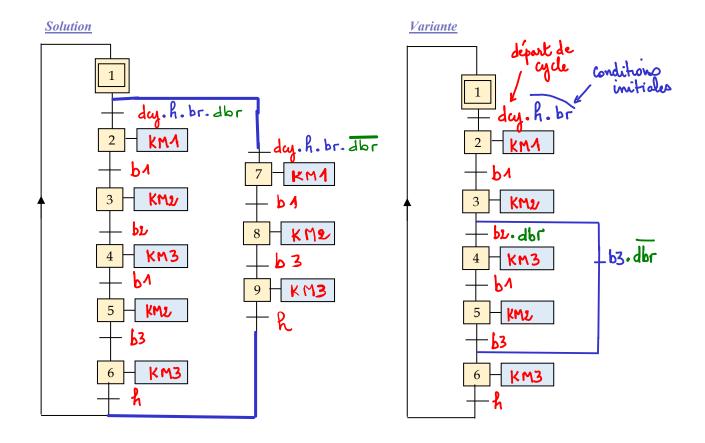
#### Cycle avec débourrage

Pendant le déroulement du cycle, la broche effectue une remontée à une position intermédiaire (détectée par b2) afin de dégager le foret avant de terminer le perçage.



#### **Actions**

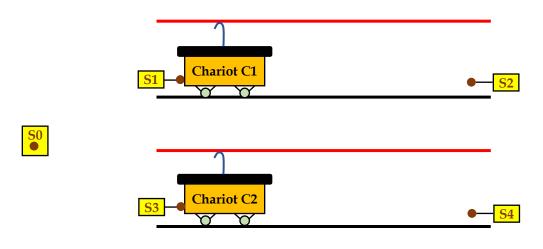
KM1 : contacteur descente en grande vitesseKM2 : contacteur descente en petite vitesseKM3 : contacteur montée en grande vitesse


#### Capteurs et éléments du pupitre

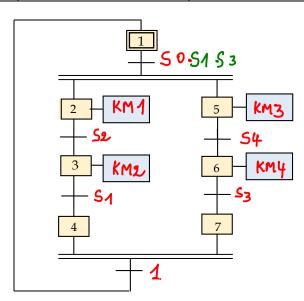
h: position haute

b1 : approche terminéeb2 : position intermédiaireb3 : perçage terminé

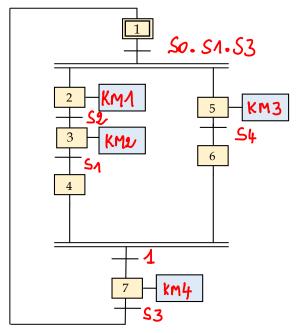
**br** : broche en rotation


dbr/dbr : commutateur avec débourrage/sans débourragedcy : Bp départ de cycle




#### Exercice : Aller et retour de deux chariots

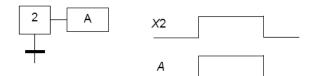
Suite à l'action sur le bouton **S0**, les deux chariots se déplacent pour effectuer chacun un aller et retour. Le cycle se termine lorsque les deux chariots se retrouvent à leurs positions initiales.


• Fournir le Grafcet de point de vue partie commande.



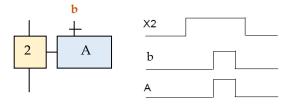
Mouvement	Actionneur	Préactionneur	Capteur
Déplacement avant de C1	M1	KM1	S2 : fin de déplacement avant
Déplacement arrière de C1	WII	KM2	S1 : fin de déplacement arrière
Déplacement avant de C2	Ma	KM3	S4 : fin de déplacement avant
Déplacement arrière de C2	M2	KM4	S3 : fin de déplacement arrière




• Modifier le Grafcet si, maintenant, le retour du chariot C2 ne peut se faire qu'après le retour du chariot C1 à sa position initiale.

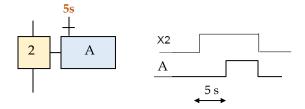


# Actions associées aux étapes


#### *Action continue*

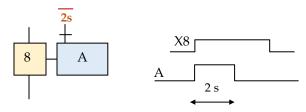
L'action se poursuit tant que l'étape à laquelle elle est associée est active.




#### *⇒* Action conditionnelle

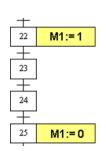
Une action conditionnelle n'est exécutée que si l'étape est active et si la condition associée à cette étape est vraie.




#### *Action retardée*

L'action est retardée par rapport à l'instant de l'activation de l'étape.

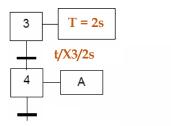


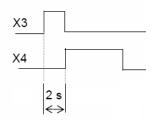

#### *Action limitée*

L'action limitée fonctionne pendant une durée depuis l'activation de l'étape.



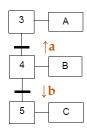
#### Action mémorisée

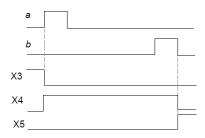

L'action se déroule sur plusieurs étapes. Il suffit d'indiquer les étapes de début et de fin de l'action. L'action M1 est active aux étapes 22, 23 et 24.



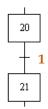

# Réceptivités particulières

#### ⇒ <u>Réceptivité fonction du temps</u>

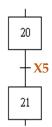

La réceptivité dépend d'une durée écoulée depuis l'activation d'une étape.





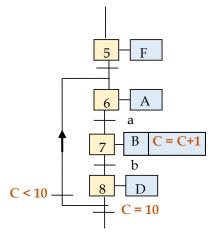


#### *⇔ Réceptivité front*

Il est fréquent que l'on ait à détecter dans un système le changement d'état d'une variable. On représente ce changement d'état par :  $\uparrow a$ , pour le front montant de a et  $\downarrow a$  pour le front descendant de a.






#### ⇒ Réceptivité toujours vraie




# *⇒ Variable associée à une étape*

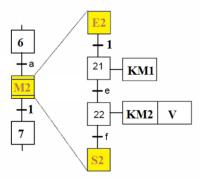


La variable X5, associée à l'étape 5, prend 1 si l'étape 5 est active et 0 dans le cas inverse.

#### *⇔* Comptage



Ici, la séquence 6-7-8 est répétée 10 fois.


#### **Structuration du GRAFCET**

#### *⇔ Macro étape*

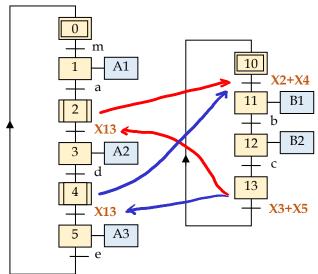
Une macro-étape est la représentation unique d'une portion du GRAFCET appelée **expansion**. Elle se substitue à une étape du GRAFCET.

L'expansion de macro-étape comporte une étape d'entrée notée E et une étape de sortie notée S.

L'utilisation des macro-étapes permet de simplifier l'écriture du GRAFCET.



#### ⇒ Synchronisation par tâche

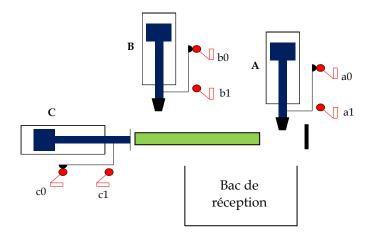

Dans le but de simplifier l'écriture de certains GRAFCET ou lorsqu'une suite de séquences apparaît plusieurs fois dans un GRAFCET, on est amené à définir des **tâches** que l'on peut appeler à partir d'un GRAFCET principal dit **GRAFCET** de coordination des tâches ou **Grafcet principal**.

Dans l'exemple suivant, on va déléguer les séquences 2-3 et 5-6 à une tâche évitant ainsi la répétition.

#### **GRAFCET** initial

# 

#### GRAFCET de coordination GRAFCET de tâche

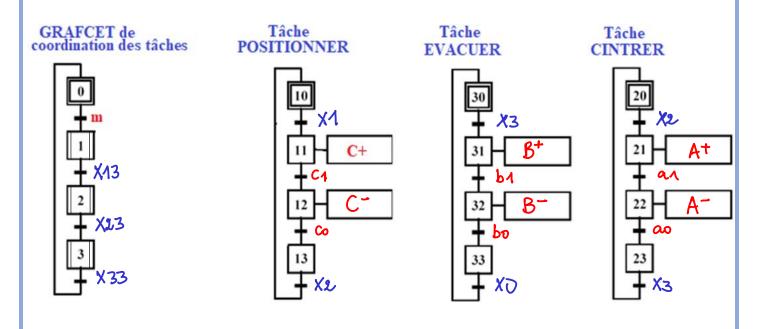



X2+X4 : information de début de la tâcheX13 : information de fin de la tâche

X3+X5: information de réinitialisation de la tâche

#### Exercice : cintreuse de tubes

Le système permet le cintrage de tubes d'aluminium. Ces tubes sont ensuite intégrés à un système d'arrosage rotatif de jardin. C'est grâce au cintrage de ces tubes que la rotation de l'arroseur est effectuée.




Dès l'appui sur un bouton poussoir  $\mathbf{m}$ , le vérin  $\mathbf{C}$  agit pour mettre le tube en position de cintrage. Le vérin  $\mathbf{A}$  descend alors pour effectuer l'opération de cintrage. Le tube traité est, ensuite, évacué dans le bac de réception grâce au vérin  $\mathbf{B}$ .

L'objectif est d'établir un Grafcet décomposé en 3 tâches :

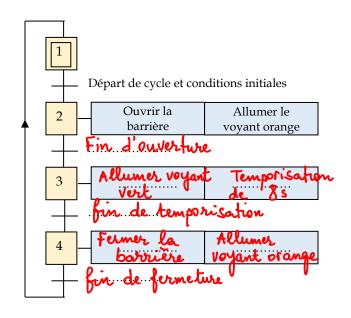
- Positionner le tube en butée ;
- Cintrer le tube ;
- Évacuer le tube dans le bac de réception.

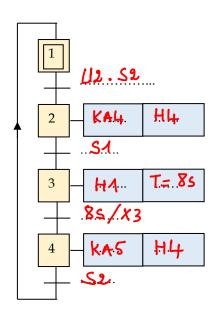
Compléter cette solution.



#### Implantation du GRAFCET dans un automate

On considère le support technique "barrière automatique" qu'on désire commander selon les séquences suivantes :

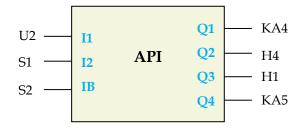

- Le système étant au repos, si on appuie sur la télécommande U2, la barrière s'ouvre (KA4) en même temps que le voyant orange H4 s'allume;
- Une fois la barrière ouverte (S1), le voyant vert H1 s'allume ;
- Après 8 s, la barrière se referme (KA5) et le voyant orange H4 s'allume ;
- Lorsque la barrière est fermée (S2), le cycle se termine.

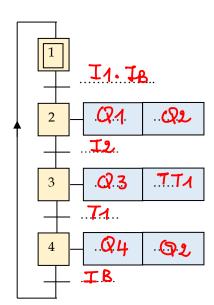

#### *Étude du GRAFCET*

• Compléter le GRAFCET d'un point de vue système et celui d'un point de vue partie command.

#### GRAFCET de point de vue système

#### GRAFCET de point de vue partie commande

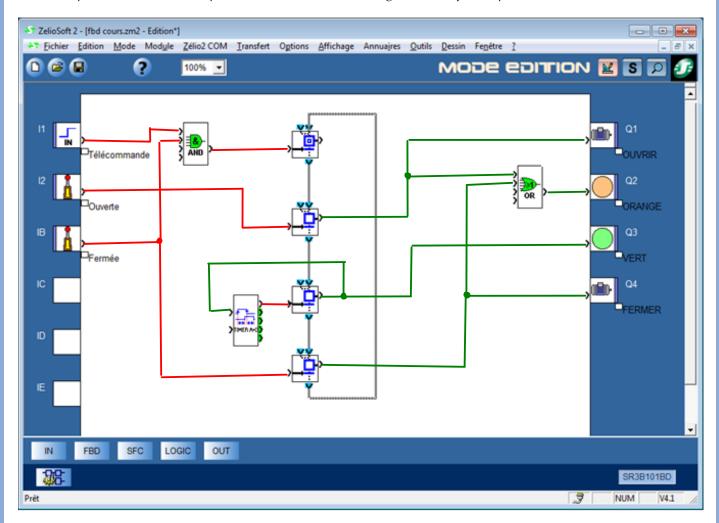



#### *⇔ GRAFCET de point de vue automate*

L'API équipant la barrière automatique est le module SR3B101BD doté de 6 entrées (I1, I2, IB, IC, ID, IE) et de 4 sorties (Q1, Q2, Q3, Q4).

• Le schéma bloc suivant, propose une affectation des entrées / sorties à l'automate, compléter le GRAFCET du point de vue API.






#### Programmation de l'API par le langage FBD

ATC/2e STE

Ci-après le schéma FBD à implanter dans l'automate via le logiciel ZelioSoft ; compléter-le

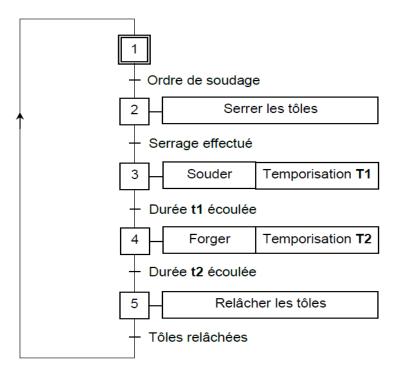


#### Programmation de l'API par le langage LADDER

Effectuer la mise en équations du GRAFCET.

Etape	Activation	Désactivation
1	SM1 = .M. 4 IB	RM1 = <b>M2</b>
2	SM2 =M1I1. IB	RM2 = .M3
3	SM3 =MlI2	RM3 = .M4
4	SM4 =M.3:T.1	RM4 =M.4

Action
Q1 =2
Q2 =M2 + M4
Q3 = <b>1.3</b>
Q4 =
T1 = <b>M3</b>


• Compléter le programme LADDER

Contact 1	Contact 2	Contact 3	Contact 4	Contact 5	Bobine	Commentaire
M4	IB				SM1	Activation étape 1
M2					RM1	Désactivation étape 1
<u>m</u>	.IA	IB			SM2	Activation étape 2
M3					RM2	Désactivation étape 2
<u>M</u> 2	<u>I</u>				SM3	Activation étape 3
<u>M4</u>					RM3	Désactivation étape 3
<u>M3</u>	<u> 1</u> 4				SM4	Activation étape 4
MA					RM4	Desactivation etape
M2					[ Q1	OUVRIR
M2					[ Q2	ORANGE
<u>M4</u>						
M3					[ Q3	VERT
M4					[ Q4	FERMER
M3					π1	TEMPORISATEUR

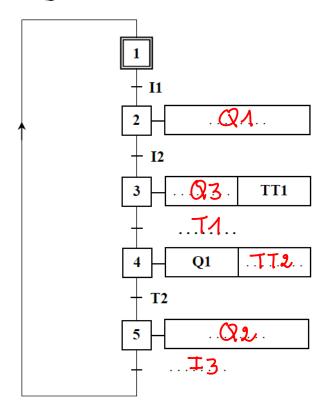
#### Exercice 1: examen national 2019, session normale

#### B. ETUDE DE LA COMMANDE DE LA TETE DE SOUDAGE

Le cycle de soudage d'un point peut être décrit par le grafcet fonctionnel suivant.(on suppose que l'accostage est déjà effectué)



La commande de la tête de soudage se fait à l'aide d'un automate programmable (API) dont les affectations des entrées / sorties sont données par le tableau suivant :


Action / Information	Entrée/Sortie API
Serrage et forgeage	Q1
Relâchement	Q2
Soudage	Q3
Ordre de soudage	I1
Serrage effectué	12
Relâchement effectué	13

Question: 42. Compléter le grafcet de point de vue API.

[3 pts]

Question: 43. Compléter le programme, en langage LADDER, traduisant le grafcet point de vue API. [3 pts]

# Question: 42. [3 pts]



#### Rappel:

À chaque temporisateur sont associés 2 bobines (TTx et RTx) et un contact Tx:

- bobine **TTx**: entrée de déclenchement de la temporisation numéro x (x = 1,2 ou 3...);
- bobine **RTx** : entrée de remise à zéro ;
- Contact **Tx** : sortie de fin de temporisation.

Question: 43 [3 pts]

#### Exercice 2: examen national 2020, session normale

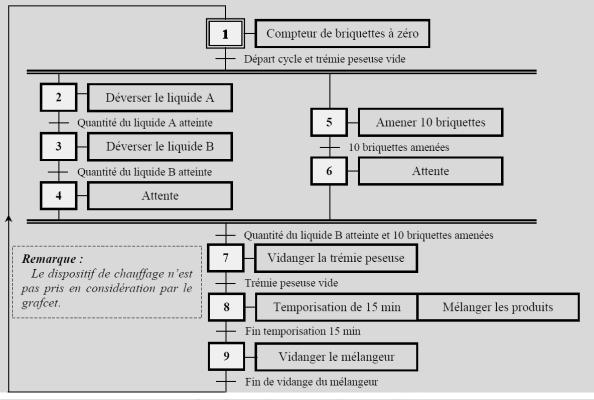
#### **Tâche 2 : GRAFCET et programme LADDER**

En se référant aux documents ressources DRES 03 et DRES 04 ; compléter :

Q47- Le GRAFCET du point de vue API.

4,5 pts

Q48- Le programme Ladder correspondant :


5,5 pts

- aux étapes 1,2, 5 et 7.
- aux actions CC1, Q5 et Q6.

# GRAFCET fonctionnel du système

DRES 03

Selon le cahier des charges les différentes fonctionnalités séquentielles du système sont décrites par le GRAFCET du point de vue système suivant :



#### Configuration matérielle de l'A.P.I

#### Identification et affectation des sorties

Actions	Actionneurs	Préactionneurs	Sorties API
Déverser le liquide A	Électrovanne V _A	Contacteur KVA	Q1
Déverser le liquide B	Électrovanne V _B	Contacteur KVB	Q2
Vidanger la trémie peseuse	Électrovanne V _C	Contacteur KVC	Q3
Amener une briquette	Moteur MR2	Contacteur KM1	Q4
Mélanger les produits	Moteur MR1	Contacteur KM2	Q5
Vidanger le mélangeur	Électrovanne $V_{D}$	Contacteur KVD	Q6
Compter le nombre de briquettes	Gamentana inter	CC1	
Remettre à zéro le compteur	Compteur interne n°1 de l'API		RC1
Définir le temps de malaxage (15 min)	Temporisateur interne n°1 de l'API		TT1

#### Identification et affectation des entrées

Consignes/Comptes rendus	Boutons/Capteurs		Entrées API
Initialisation	Bouton poussoir Init		I1
Départ cycle	Bouton poussoir De	cy	I2
Fin de vidange du mélangeur	Bouton poussoir Fv		13
Quantité du liquide A atteinte		PA	I4
Quantité du liquide B atteinte	Capteur de force + Conditionneur	PB	15
Trémie peseuse vide	Conditioninedi	Po	<b>I</b> 6
Briquette amenée	Détecteur optique Pi		I7
Nombre de briquettes dans le mélangeur = 10	Contact interne C1 du compteur		compteur
Fin de la temporisation de 15 min	Contact interne T	l du ter	nporisateur

# Langage LADDER

DRES 04

I5

Q1

Q2

Q3

#### Action conditionnelle:

- L'action Q1 est conditionnelle;
- L'action Q1 est effective lorsque l'étape 6 est active et la condition I5 est vraie ;
- L'équation de Q1 est : **Q1 = M6.I5**

#### Bloc compteur:

L'A.P.I possède plusieurs blocs compteurs de C1 ... Cn.

Le bloc fonction compteur permet de compter ou décompter des impulsions jusqu'à une valeur de présélection.

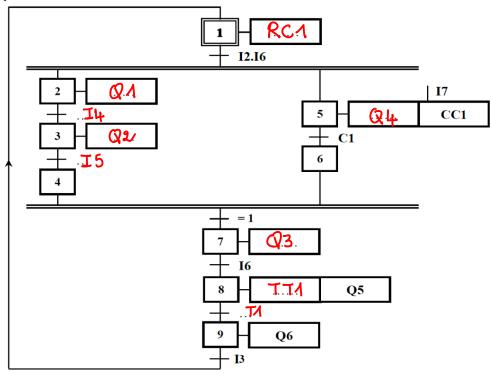
À chaque compteur sont associées 3 bobines (RCx, CCx et DTx) et un contact Cx:

- Bobine CCx: entrée de comptage ou de décomptage de numéro x (x = 1,2 ou 3...);
- Bobine **DCx** : entrée du sens de comptage (le bloc décompte si cette entrée est activée) ;
- Bobine **RCx** : entrée de remise à zéro du compteur ;
- Contact **Cx**: sortie de fin de comptage.

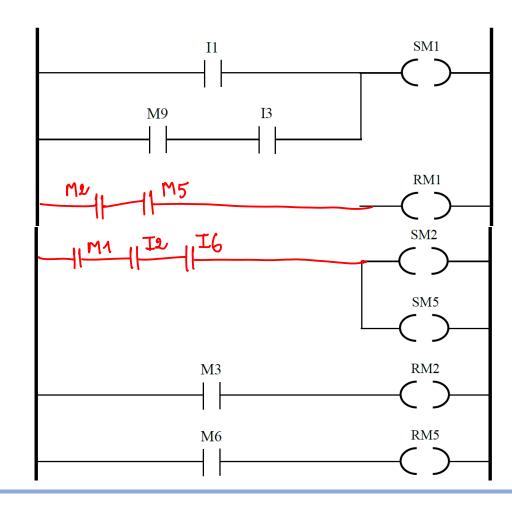
Le compteur 1 est paramétré à 10 donc le contact associé C1 se ferme lorsque le compteur atteint la valeur de présélection 10.

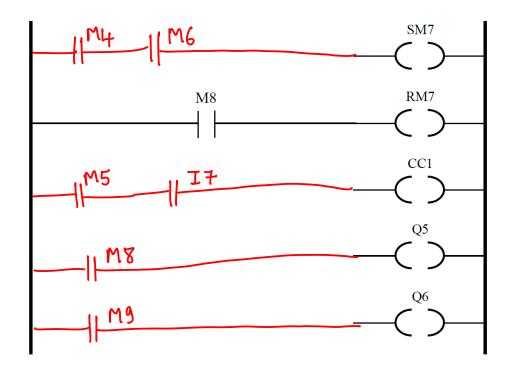
#### Bloc temporisateur:

L'A.P.I possède plusieurs blocs temporisateurs de T1 ... Tm.


Le bloc fonction temporisateur permet de temporiser des actions.

À chaque temporisateur sont associées 2 bobines (TTx et RTx) et un contact Tx :


- Bobine TTx: entrée de lancement de la temporisation de numéro x (x = 1,2 ou 3...);
- Bobine **RTx** : entrée de remise à zéro :
- Contact **Tx**: sortie de fin de temporisation.


Le temporisateur 1 est paramétré à 15 min donc le contact associé T1 se ferme 15 min après le déclenchement de la temporisation.

Q47- [4,5 pts]



Q48- [5,5 pts]





#### Exercice 3 : examen national 2021, session de rattrapage

Les différentes fonctionnalités séquentielles du système sont décrites par le GRAFCET global du point de vue fonctionnel donné au document ressources **DRES 03**.

Le GRAFCET de sécurité arrête la production (force le GRAFCET de production à son état initial) en cas d'éventuel défaut ou après un arrêt d'urgence.

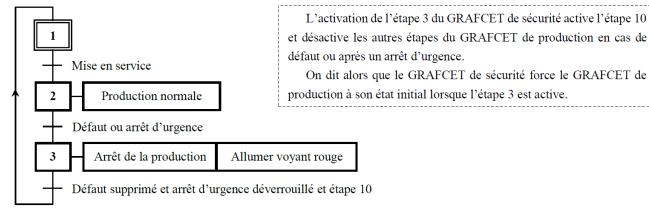
#### <u>Tâche 1 : GRAFCET et programme LADDER</u>

En se référant aux documents ressources DRES 03 et DRES 04, compléter :

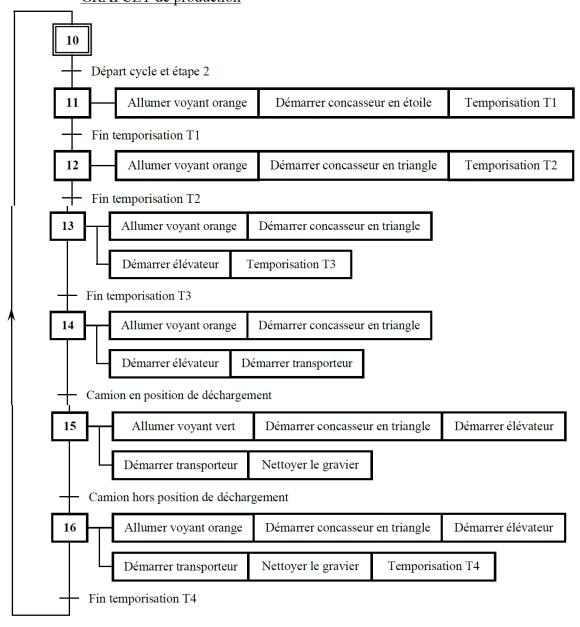
Q37- Le GRAFCET du point de vue API.

5 pts

Q38- Le programme Ladder correspondant :


- aux étapes 10,11 et 15;
- aux actions TT4 et Q6.

#### GRAFCET fonctionnel du système


DRES 03

#### GRAFCET de sécurité

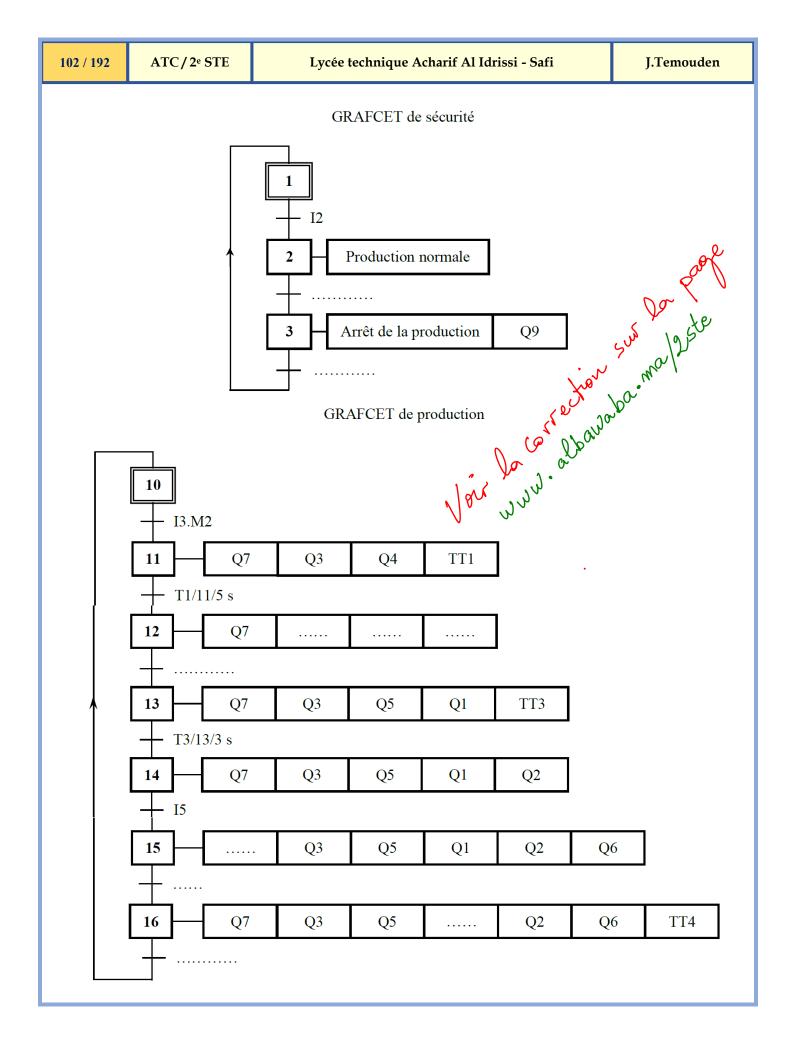
ATC/2e STE



#### **GRAFCET** de production



# Configuration matérielle de l'A.P.I et langage LADDER


DRES 04

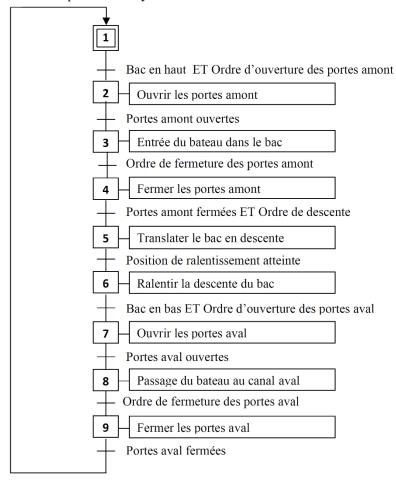

# Identification et affectation des sorties

Actions/Messages/Temporisations	Actionneurs	Préactionneurs	Sorties API
Démarrer élévateur	Moteur M1	Contacteur de ligne KM1	Q1
Démarrer transporteur	Moteur M2	Contacteur de ligne KM2	Q2
Démorros concessous on étaile	Moteur M3	Contacteur de ligne KM3	Q3
Démarrer concasseur en étoile	Moteur M3	Contacteur étoile KM4	Q4
D'	N/ 1 N/2	Contacteur de ligne KM3	Q3
Démarrer concasseur en triangle	Moteur M3	Contacteur triangle KM5	Q5
Nettoyer le gravier	Électrovanne <b>EV</b>		Q6
Absence du camion en position de déchargement	Voyant orange <b>H1</b>		<b>Q</b> 7
Présence du camion en position de déchargement	Voyant vert <b>H2</b>		Q8
Défaut ou un arrêt d'urgence	Voyant rouge H3		Q9
Temporisation 5 s	Temporisateur interne n°1 de l'API		TT1
Temporisation 4 s	Temporisateur interne n°2 de l'API		TT2
Temporisation 3 s	Temporisateur interne n°3 de l'API		TT3
Temporisation 10 min	Temporisateur interne n°4 de l'API		TT4

# Identification et affectation des entrées

Consignes/Comptes rendus	Boutons/Capteurs	Entrées API	
Initialisation	Bouton poussoir Init	I1	
Mise en service du système	Bouton poussoir S1	I2	
Départ cycle	Bouton poussoir S2	I3	
Arrêt d'urgence	Bouton poussoir S3	I4	
Camion en position de déchargement	Détecteur électromécanique P	15	
Présence d'un défaut	Capteurs (couple, courant)	<b>I</b> 6	
Fin de la temporisation de 5 s	Contact interne <b>T1</b> du temporisa	teur n°l	
Fin de la temporisation de 4 s	Contact interne <b>T2</b> du temporisateur n°2		
Fin de la temporisation de 3 s	Contact interne T3 du temporisateur n°3		
Fin de la temporisation de 10 min	Contact interne <b>T4</b> du temporisa	teur n°4	






#### Exercice 4 : examen national 2022, session de rattrapage

#### Tâche 2 : Cycle de manœuvre de l'ascenseur

Un opérateur, depuis son poste de commande et via un pupitre, contrôle le cycle de manœuvre, descente ou montée, du bac

Le Grafcet suivant décrit uniquement le cycle de la descente du bac :



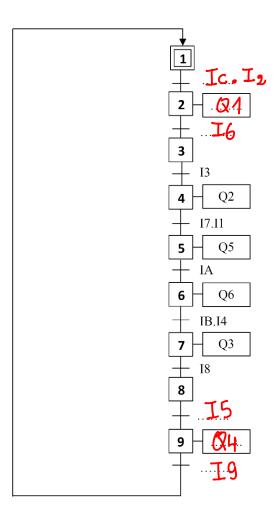
Q.47) En se référant au Grafcet ci-dessus et au DRES 04, compléter le Grafcet de point de vue A.P.I. 3 pts

Dans ce qui suit, on va déléguer la séquence d'étapes "4-5-6-7" à une tâche qu'on va appeler "Translation descendante".

**Q.48)** En partant du Grafcet de point de vue API (**Question 47**), compléter le Grafcet de la tâche "Translation descendante" ;

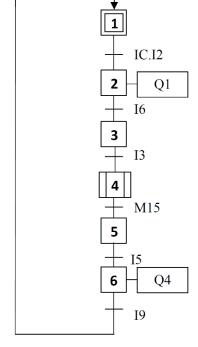




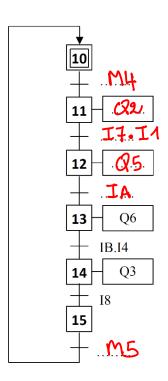

DRES 04

# Tableaux d'affectation des entrées/sorties de l'automate

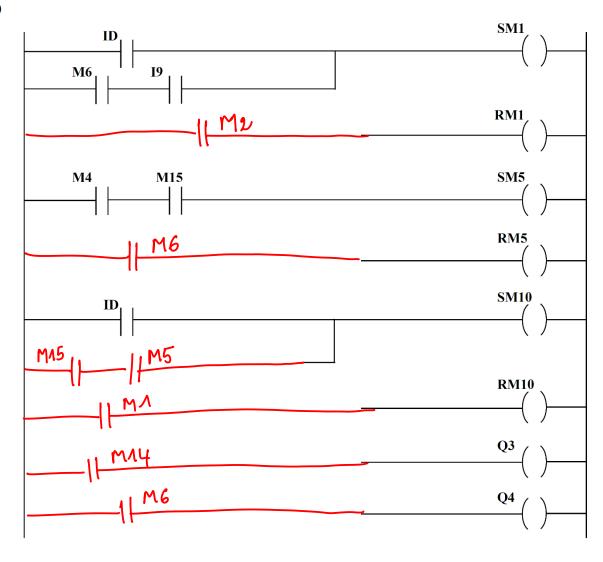
Entrées				
Information	Éléments de consigne et capteurs	Entrée automate		
Ordre de descente	S1	<b>I</b> 1		
Ordre d'ouverture des portes amont	S2	<b>I</b> 2		
Ordre de fermeture des portes amont	S3	13		
Ordre d'ouverture des portes aval	S4	14		
Ordre de fermeture des portes aval	S5	15		
Portes amont ouvertes	pmo	16		
Portes amont fermées	pmf	<b>I7</b>		
Portes aval ouvertes	pvo	18		
Portes aval fermées	pvf	19		
Position de ralentissement atteinte	b	IA		
Bac en bas	a	IB		
Bac en haut	d	IC		
Bouton d'initialisation	S6	ID		


Sorties		
Action	Pré-actionneurs	Sortie automate
Ouvrir les portes amont	OPM	Q1
Fermer les portes amont	FPM	Q2
Ouvrir les portes aval	OPV	Q3
Fermer les portes aval	FPV	Q4
Translater le bac en descente	DGV	Q5
Ralentir la descente du bac	DPV	Q6

Q.47)




Q.48)






Tâche "Translation descendante"



Q.49)

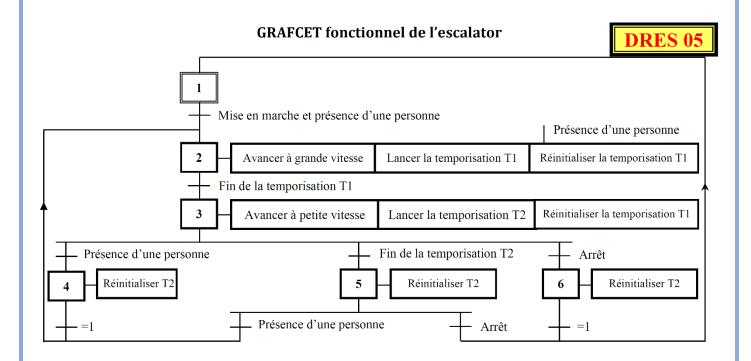


Exercice 5 : examen national 2023, session normale

#### Tâche 1 : GRAFCET de fonctionnement de l'escalier et programme LADDER

Les différentes fonctionnalités séquentielles du système sont décrites par le GRAFCET fonctionnel donné au document ressources **DRES 05**.

La commande de l'escalier mécanique est assurée par un automate programmable industriel (**A.P.I**) dont les affectations des entrées / sorties sont données par les tableaux du document ressources **DRES 05**.


Q.29-Compléter le GRAFCET du point de vue A.P.I traduisant le fonctionnement de l'escalier.

3,5 pts

**Q.30-**Compléter le programme LADDER correspondant :

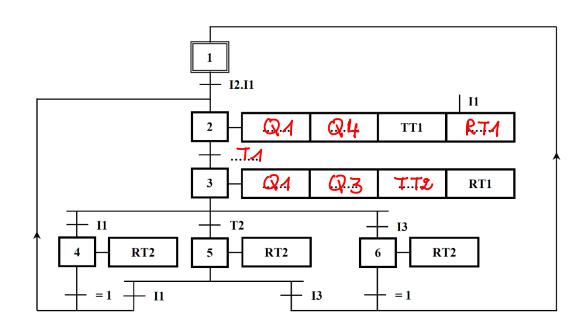


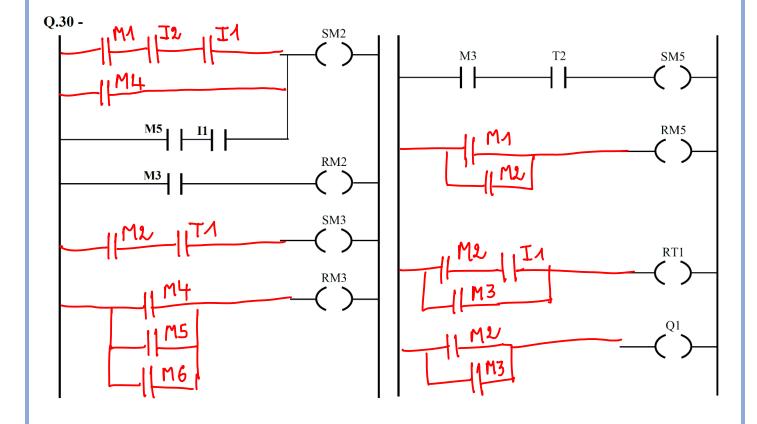
- Aux étapes 2, 3 et 5.
- Aux actions **RT1** et **Q1**.



L'escalier mécanique est prêt à fonctionner lorsqu'on bascule l'interrupteur bistable Marche/Arrêt sur la position Marche (l'étude sera limitée au sens de marche **avant**) :

- Lorsqu'une personne est détectée au niveau du palier d'entrée par le détecteur de présence, le moteur accélère jusqu'à la grande vitesse  $V_1 = 0.6$  m/s (mode normal);
- Si aucune personne ne se présente dans un délai  $T_1$ , le moteur décélère jusqu'à la petite vitesse  $V_2 = 0.28$  m/s (mode veille);
- Si aucune personne ne se présente dans un délai T₂, le moteur s'arrête ;
- Lorsqu'une personne se présente à nouveau au niveau du palier d'entrée, le moteur accélère jusqu'à la grande vitesse V₁ = 0,6 m/s, qu'il soit à l'arrêt ou en mode veille;
- La prise en compte d'un arrêt (en basculant l'interrupteur bistable Marche/Arrêt sur la position Arrêt) se fait durant le mode veille ou l'arrêt du moteur.


#### Identification et affectation des sorties


Actions	Actionneurs	Actionneurs Préactionneurs		
A vom con Passalian à aron de vitages	Mataum	Variateur de vitesse Altivar 31 (LI1)	Q1	
Avancer l'escalier à grande vitesse	Moteur	Variateur de vitesse Altivar 31 (LI4)	Q4	
A 12 1i 2 4i i	Mataura	Variateur de vitesse Altivar 31 ( <b>LI1</b> )	Q1	
Avancer l'escalier à petite vitesse	Moteur	Variateur de vitesse Altivar 31 ( <b>LI3</b> )	Q3	
Lancer la temporisation Tx		TTx		
Réinitialiser la temporisation Tx	Temporisateurs T1 et T2			

#### Identification et affectation des entrées

Compte-rendu et consigne	Capteur et bouton	API
Présence d'une personne	Détecteur optique	<b>I</b> 1
Marche	Intermediate historia	I2
Arrêt	Interrupteur bistable	I3
Fin de temporisation Tx	Temporisateurs 1 et 2	Tx

Q.29 -



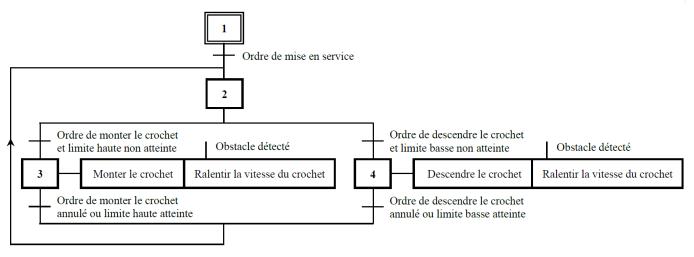


#### Exercice 6: examen national 2024, session normale

ATC/2e STE

Le déplacement vertical de la charge (levage) est géré par un automate programmable industriel (A.P.I).

Les tableaux donnés en DRES 03 précisent les affectations des entrées et des sorties de l'A.P.I.


Le schéma synoptique de commande de déplacement vertical du crochet est donné en DRES 03.

On note que le moteur M1 ralentit à la vitesse  $V_R$  lorsque le capteur P détecte, à une distance d prédéfinie, la présence d'un obstacle.

## Tâche 1 : Étude du GRAFCET de déplacement vertical du crochet (levage)

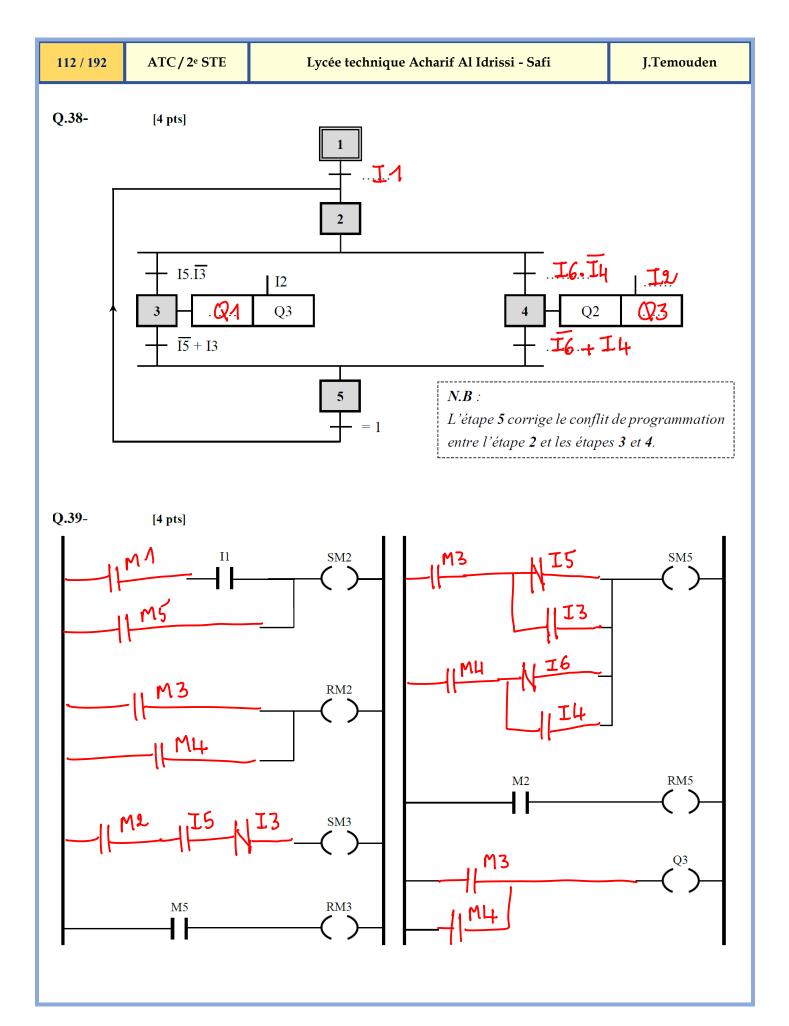
On se propose d'établir le programme ladder permettant la commande de déplacement vertical de la charge.

Le cycle de déplacement vertical de la charge suivant l'axe **Z** est décrit par le GRAFCET fonctionnel suivant



En se référant aux tableaux d'affectations des entrées et des sorties de l'A.P.I. du document **DRES 03**, compléter:

Q.38-Le GRAFCET du point de vue A.P.I.


Q.39-Le programme Ladder correspondant aux étapes 2, 3 et 5 et à l'action Q3.

#### Tableaux d'affectations des entrées et des sorties de l'API

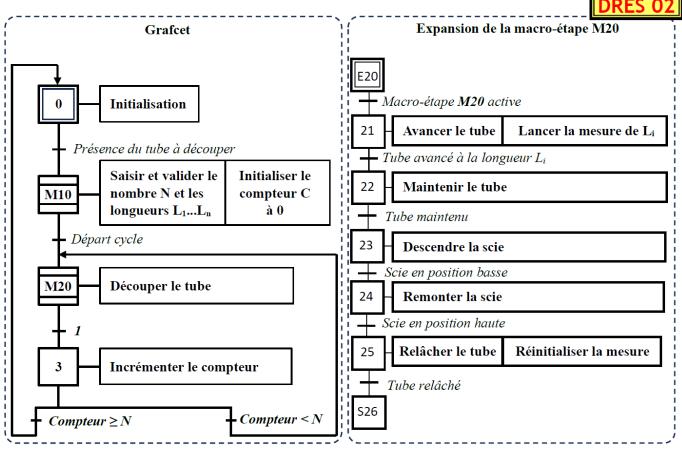
DRES 03

Con	Entrée API		
Bouton	S1	Mise en service du système	I1
Détecteur d'obstacle P		Obstacle détecté	<b>I2</b>
Fin de course	F _H	Limite haute du crochet	I3
	$\mathbf{F}_{\mathbf{B}}$	Limite basse du crochet	<b>I</b> 4
Torretials T4 November		Ordre de monter le crochet	15
Joystick <b>J1</b> à un	axe	Ordre de descendre le crochet	<b>I</b> 6

Ordre	Sortie API	
Monter le crochet	KA1	Q1
Descendre le crochet	KA2	Q2
Ralentir la vitesse du crochet	KA3	Q3



### Exercice 7 : examen national 2024, session de rattrapage


# Tâche 4 : Étude du grafcet point de vue commande

À partir du Grafcet (DRES 02) et des données des tableaux du DRES 03 :

Q46. Compléter, de point de vue commande, l'expansion de la macro-étape M20.



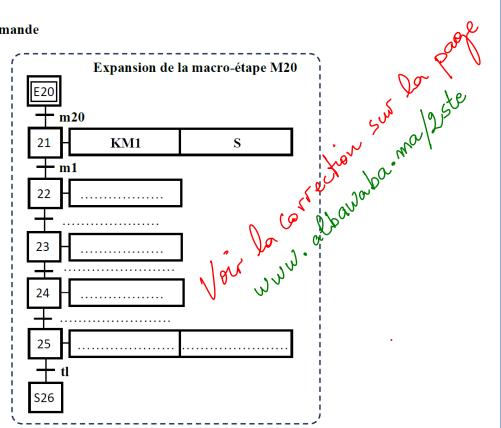
# Grafcet de point de vue système



#### Tableau d'affectation des entrées

**DRES 03** 

Fonction de l'entrée	Capteur/Interface d'entrée
Départ cycle	Dcy
Présence tube	ср
I anguan I a puádáfinia attainta	m1 (Bit 0 de la case mémoire
Longueur Ln prédéfinie atteinte	interne CMI)
Manua átana 1420 activo	m20 (Bit 1 de la case mémoire
Macro-étape M20 active	interne CMI)
Tube maintenu	tm
Tube relâché	tl
Scie en position basse	sb
Scie en position haute	sh


### Tableau d'affectation des sorties

Action	Actionneur	Pré actionneur
Avancer le tube	Moteur électrique <b>M1</b>	KM1
Maintenir le tube	Vánia double effet V2	V2+
Relâcher le tube	Vérin double effet <b>V2</b>	V2-
Remonter la scie	V/::: 111 C - V1	V1-
Descendre la scie	Vérin double effet <b>V1</b>	V1+

### Commande du capteur de distance

Fonction	Contact de commande
Lancer la mesure	S (Set)
Réinitialiser la mesure	R (Reset)

#### Q46. Grafcet point de vue commande

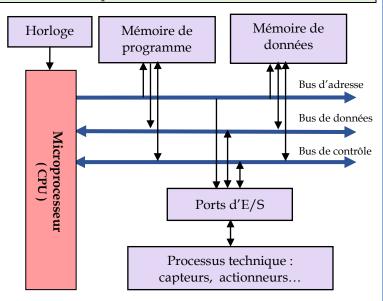


7

# **MICROCONTROLEURS**

# **Environnement microinformatique minimal**

Le contrôle d'un processus technique fait souvent appel à un dispositif de traitement programmable composé de deux éléments complémentaires indissociables :


- **Logiciel** : programme qui décrit la gestion du processus technique ;
- Matériel : dispositif électronique, à base de μP, qui héberge le programme et lui donne vie.

Ci-contre, la structure d'un système programmable minimal :

#### 1. Microprocesseur

(ou CPU pour Central Processing Unit)

Le  $\mu P$  exécute le programme situé dans la mémoire de programme. Toute l'activité du  $\mu P$  est cadencée par une horloge.



#### 2. <u>Mémoires</u>

Ce sont des composants chargés de conserver des contenus. En fonction des propriétés des mémoires, on distingue :

	Lecture	Écriture	Volatile
RAM	Oui	Oui	Oui
ROM	Oui	Non (programmée une seule fois au moment de la fabrication)	Non
PROM	Oui	Programmable une seule fois par l'utilisateur	Non
EEPROM	Oui	Effaçable électriquement à l'aide d'une broche spécifique et reprogrammable	Non

- Une mémoire volatile perd son contenu à la coupure de l'alimentation ;
- En principe, la RAM sert de mémoire de données tandis que la ROM sert de mémoire de programme ;
- Une variante de l'EEPROM est la mémoire FLASH qui est rapide et accepte d'être reprogrammée un grand nombre de fois.

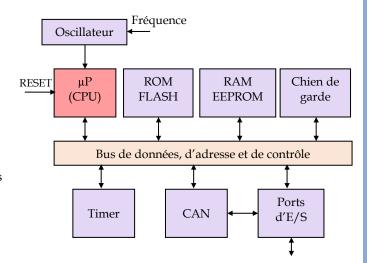
#### 3. Ports d'entrée/sortie

Ils ont pour rôle d'interfacer les périphériques afin de dialoguer avec le processus à gérer.

- ⇒ *Port parallèle* : les données sont transmises par paquets de 8, 16 …bits.
- ⇒ Port série : les données sont transmises bit pat bit sur un fil unique (exemples : USB, RS232, RS485).

#### 4. Bus

Un bus est ensemble de fils destiné à véhiculer les données entre les différents composants du système. On distingue :

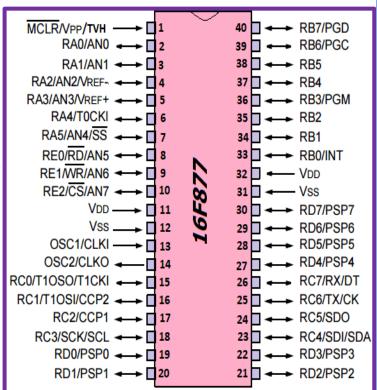

- Bus de données : à travers lequel transitent les données ;
- Bus d'adresse : à travers lequel le μP applique l'adresse de la donnée à lire ou à écrire ;
- Bus de contrôle : à travers lequel le μP dialogue avec le composant adressé.

# Microcontrôleur PIC 16F877

#### Généralités

Le  $\mu$ C se présente sous la forme d'un circuit intégré réunissant tous les éléments d'une structure à base de  $\mu$ P ainsi que certains modules auxiliaires :

- Un μP;
- De la mémoire de données (RAM, EEPROM);
- De la mémoire de programme (FLASH, EEPROM) ;
- Des ports pour la connexion des entrées/sorties;
- Des timers pour générer des impulsions, compter des évènements, mesurer des fréquences...;
- Des CAN pour traiter des signaux analogiques ;
- Un chien de garde : qui détecte s'il y a un problème logiciel et provoque un RESET;

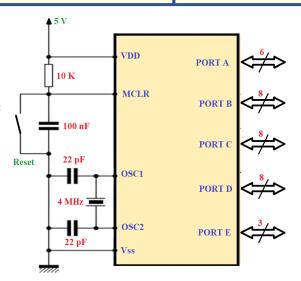



Aujourd'hui on trouve les μC presque partout : cafetière, réfrigérateur, four à micro-ondes, téléviseur, téléphone portable, imprimante, scanner, voiture (airbags, climatisation, alarme...)...

#### Architecture externe (brochage) du PIC 16F877 de Microchip

La popularité du 16F877 vient de sa facilité de mise en œuvre et la disposition d'un environnement de développement complet totalement gratuit : MPLAB.

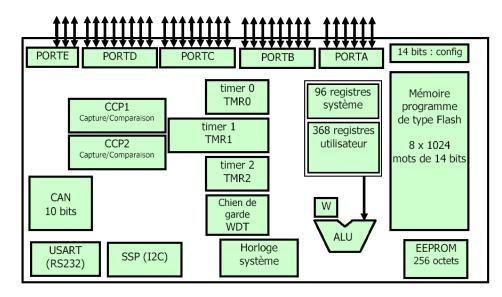
- L'alimentation du circuit est assurée par les pins VDD = +5V et VSS = 0V;
- OSC1 et OSC2 : broches qui reçoivent un quartz ou un circuit RC pour l'horloge interne ;
- MCLR (Master Clear Reset) : broche de remise à zéro, active au niveau bas (0 V);
- RAO à RA5: 6 broches E/S du PORT A;
   RBO à RB7: 8 broches E/S du PORT B;
   RCO à RC7: 8 broches E/S du PORT C;
   RDO à RD7: 8 broches E/S du PORT D;
   REO à RE2: 3 broches E/S du PORT E.




#### Mise en œuvre

Ci-contre, un montage minimal avec :

ATC/2e STE


- Alimentation du composant (VDD = +5V et VSS = 0V);
- Pilotage par quartz, ici de 4 MHz (OSC1 et OSC2);
- RESET manuel par un bouton poussoir ;
- RESET automatique à chaque mise sous tension.
   En effet, le condensateur est initialement déchargé (MCLR = 0), puis se charge jusqu'à VDD (MCLR = 1).



#### Architecture interne

Les caractéristiques principales du 16F877 sont :

- Une mémoire programme de type flash de 8K mots de 14 bits de h'0000' à h'1FFF' (1K = 2¹⁰ = 1024);
- Une **mémoire RAM** constituée :
  - 96 registres SFR (Special Function Register) : sont les registres de fonctionnement du PIC et ayant des fonctions spéciales ;
  - 368 registres GPR (General Propose Register) : sont des positions mémoire que l'utilisateur peut utiliser pour stocker ses variables.
- Une mémoire EEPROM Data de données de 256 octets ;
- 3 Timers avec prédiviseur programmable : 2 timers 8 bits TMR0, TMR2 et un autre 16 bits TMR1;
- Un chien de garde WDT;
- CAN 10 bits à approximations successives à 8 entrées multiplexées;
- 33 Entrée-Sortie bidirectionnelles réparties sur 5 ports : PORTA à 6 bits, PORTB, PORTC, PORTD à 8 bits et PORTE à 3 bits ;
- 1 registre de travail (accumulateur) W à 8 bits ;
- Bus DATA sur 8 bits ;
- Jeu de 35 instructions de durée 1 ou 2 cycles ;
- Plusieurs sources d'interruption ;
- Autres modules : USART pour transmission série, interface I2C, 2 modules pour PWM...



AM de donnée Page 0 INDF TMR0 PCL STATUS FSR PORTA PORTB PORTC PORTD PORTE PCLATH INTCON PIR1	80	Page 1 INDF  OPTION PCL STATUS FSR TRISA TRISB TRISC TRISD TRISE	100 101 102 103 104 105 106 107	Page2 INDF TMR0 PCL STATUS FSR PORTB	180 181 182 183 184 185 186	Page 3 INDF OPTION PCL STATUS FSR TRISB	
INDF TMR0 PCL STATUS FSR PORTA PORTB PORTC PORTD PORTE PCLATH INTCON PIR1	81	INDF OPTION PCL STATUS FSR TRISA TRISB TRISC TRISC TRISD TRISE	101 102 103 104 105 106	INDF TMR0 PCL STATUS FSR	181 182 183 184 185	INDF OPTION PCL STATUS FSR	
INDF TMR0 PCL STATUS FSR PORTA PORTB PORTC PORTD PORTE PCLATH INTCON PIR1	81	INDF OPTION PCL STATUS FSR TRISA TRISB TRISC TRISC TRISD TRISE	101 102 103 104 105 106	INDF TMR0 PCL STATUS FSR	181 182 183 184 185	INDF OPTION PCL STATUS FSR	
PCL STATUS FSR PORTA PORTB PORTC PORTD PORTE PCLATH INTCON PIR1	82	PCL STATUS FSR TRISA TRISB TRISC TRISC TRISD	102 103 104 105 106 107	PCL STATUS FSR	182 183 184 185	PCL STATUS FSR	
FSR PORTA PORTB PORTC PORTD PORTE PCLATH INTCON PIR1	83 84 85 86 87 88 89 8A 8B	STATUS FSR TRISA TRISB TRISC TRISD TRISE	103 104 105 106 107	STATUS FSR	183 184 185	STATUS FSR	
FSR PORTA PORTB PORTC PORTD PORTE PCLATH INTCON PIR1	83 84 85 86 87 88 89 8A 8B	FSR TRISA TRISB TRISC TRISC TRISD TRISE	103 104 105 106 107	FSR	183 184 185	FSR	
PORTA PORTB PORTC PORTD PORTE PCLATH INTCON PIR1	84 85 86 87 88 89 8A 8B	TRISA TRISB TRISC TRISD TRISE	104 105 106 107		184 185		]
PORTB PORTC PORTD PORTE PCLATH INTCON PIR1	85 86 87 88 89 8A 8B	TRISB TRISC TRISD TRISE	105 106 107	PORTB	185	TRISB	1
PORTC PORTD PORTE PCLATH INTCON PIR1	86 87 88 89 8A 8B	TRISC TRISD TRISE	106 107	PORTB		TRISB	
PORTD PORTE PCLATH INTCON PIR1	88 89 8A 8B	TRISD TRISE					
PORTE PCLATH INTCON PIR1	89 8A 8B	TRISE	108		187		
PCLATH INTCON PIR1	8A 8B				188		ا ہے ا
INTCON PIR1	8B	DCT ATT	109		189		SFR
INTCON PIR1	8B	PCLATH	10A	PCLATH	18A	PCLATH	S
	Г	INTCON	10B	INTCON	18B	INTCON	1
DIDO	8C	PIE1	10D	EEDATA	18C	EECON1	1
PIR2	8D	PIE2	10D	EEADR	18D	EECON2	1
TMR1L	8E	PCON	10E	EEDATH	18E		1
TMR1H	8F		10F	EEADRH	18F		
T1CON	90		110		190		
TMR2	91	SSPCON2	110		150		
T2CON	92	PR2					
SSBUF	93	SSPADD					
SSPCON	94	SSPSTAT					
CCPR1L	95						
CCPR1H	96			RAM		RAM	
CCP1CON	97			16 octets		16 octets	GPR
RCSTA	98	TXSTA					
TXREG	99	SPBRG					
RCREG	9A						
CCPR2L	9B						
CCPR2H	9C						
CCP2CONL	9D						
ADRESH	9E	ADRESL					
ADCON0	9F	ADCON1	11F		19F		
	A0		120		1A0		
				2.24			
RAM		ou octets		ou ocieis		ou octets	
RAM 6 octets							
RAM 06 octets	EF		16F		1EF		
	F0		170		1F0		
			1.75		100		
	PP		1/1		111		l
		AM octets	AM 80 octets  EF F0	AM 80 octets  EF 16F 170	RAM 80 octets  EF 16F 170	AM 80 octets  EF 16F 170 1EF 1F0	RAM 80 octets  EF F0 16F 170 1F0

# Programmation du PIC 16F877 en langage assembleur

# Jeu d'instructions du 16F877

ATC/2e STE

	INSTRU	CTIONS OPERANT SUR UN REGISTRE	Indicateurs	Cycles					
ADDWF	F, d	W+F $\rightarrow$ {W, F?d}	C, DC, Z	1					
ANDWF	F, d	W AND F $\rightarrow \{W, F?d\}$	Z	1					
CLRF	F	0 <b>→</b> F	Z	1					
CLRW		$0 \rightarrow W$	Z	1					
CLRWDT		0 → WDT	TO', PD'	1					
COMF	F, d	Complémente F → {W, F?d}	Z	1					
DECF	F, d	Décrémente F → {W, F?d}	Z	1					
DECFSZ	F, d	Décrémente F → {W, F?d} et saut si 0		1(2)					
INCF	F, d	Incrémente F $\rightarrow$ {W, F?d}	Z	1					
INCFSZ	F, d	Incrémente F → {W, F?d} et saut si 0		1(2)					
IORWF	F, d	W OR F $\rightarrow$ {W, F?d}	Z	1					
MOVF	F, d	F → {W, F?d}	Z	1					
MOVWF	F	$W \rightarrow F$		1					
RLF	F, d	Rotation à gauche de F à travers C → {W, F?d}	С	1					
RRF	F, d	Rotation à droite de F à travers C → {W, F?d}		1					
SUBWF	F, d	$F - W \rightarrow \{W, F?d\}$	C, DC, Z	1					
SWAPF	F, d	Permute les 2 quartets de F $\rightarrow$ {W, F? d}		1					
XORWF	F, d	W XOR F $\rightarrow \{W, F?d\}$	Z	1					
	INSTRUCTIONS OPERANT SUR UN BIT								
BCF	F, b	0 → bit b du registre F		1					
BSF	F, b	1 → bit b du registre F		1					
BTFSC	F, b	Test du bit b de F et saut si 0		1(2)					
BTFSS	F, b	Test du bit b de F et saut si 1		1(2)					
	INSTRU	CTIONS OPERANT SUR UNE DONNEE							
ADDLW	K	$W + K \rightarrow W$	C, DC, Z	1					
ANDLW	K	$W \text{ AND } K \rightarrow W$	Z	1					
IORLW	K	$W \text{ OR } K \rightarrow W$	Z	1					
MOVLW	K	$K \rightarrow W$		1					
SUBLW	K	$K-W \rightarrow W$	C, DC, Z	1					
XORLW	K	$W XOR K \rightarrow W$	Z	1					
	-	INSTRUCTIONS GENERALES							
CALL	L	Branchement à un sous-programme de label L		2					
GOTO	L	Branchement à la ligne de label L		2					
NOP		Pas d'opération		1					
RETURN		Retour d'un sous-programme		2					
RETFIE		Retour d'interruption		2					
RETLW	K	Retour d'un sous-programme avec K dans W		2					
SLEEP		Mode standby	TO', PD'	1					

La notation {W, F? d} signifie que le résultat va soit dans W si d=0 ou w, soit dans F si d= 1 ou f.

### ⇒ Accès à la RAM

Registre STATUS IRP	RP1	RP0	<del>T0</del>	PD	Z	DC	C
---------------------	-----	-----	---------------	----	---	----	---

Les bits RP1 et RP0 du registre STATUS permettent la sélection des pages de la RAM selon ce tableau :

RP1	RP0	Page sélectionnée
0	0	Bank 0
0	1	Bank 1
1	0	Bank 2
1	1	Bank 3

# *⇒* Expression des nombres

L'assembleur considère les nombres dans la base indiquée par la spécification adjointe :

Base	Indicateur	Exemple
Décimal	d	d'27'
Hexadécimal	h 0x	h'1B' ou 0x1B 1Bh
Binaire	b	b'00011011'

### Exercice

En utilisant le plan d'organisation de la RAM, trouver la page concernée.

Registre	Bank
PORTA	<b>.0</b>
TRISA	1
TMR0	U.,.ou2
ADCON1	1

# Exercice

Action	Code assembleur					
Sélectionner la page 0	BCF 0x03, 6 bcf0x03.,5	ou mieux	BCF STATUS, RP1 b.cfSTATUS.,.R11			
Sélectionner la page 2	bsfSTATUS, F	RP4 RPO				
	clrw	; par CLRW				
Mettre à 0 le registre W	autrement andlu0x00 ou encore	; par AND				
	movilu d'o'	; charger la valeu	ar 0 dans W			

Incrémenter le registre GPR d'adresse 0x20	movflx20,W addlwd'.1' movwfOx20	; copier le registre 0x20 dans W ; Incrémenter le registre W ; copier W dans 0x20
	incf. 1x20, f	; incrémenter le registre 0x20 par incf ; RAZ du registre PORTB
Charger le registre PORTB par le mot 10000001	bsffortb,0 bsffortb,7	; forcer le bit $b_0$ à 1 ; forcer le bit $b_7$ à 1
pui it moi 10000001	movew b'1000 000 movef PORTB	; charger l'octet '10000001' dans W ; copier W dans PORTB
Copier le contenu de PORTA dans PORTB	move PORTA, W moved PORTB	; copier le contenu de PORTA dans W ; copier W dans PORTB

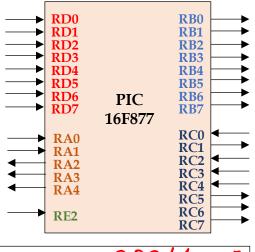
#### ⇒ Ports d'entrées/sortie

PORTA: pins RA0 à RA5 PORTB: pins RB0 à RB7 PORTC: pins RC0 à RC7 PORTD: pins RD0 à RD7 PORTE: pins RE0 à RE2

- La direction des données sur les ports est programmée à travers les registres TRISA, TRISB, TRISC, TRISD et TRISE de la façon suivante :
  - **0** → configure la broche correspondante en **sortie** ;
  - 1 → configure la broche correspondante en entrée.

Exemples: la valeur '00000011' dans TRISB configure les broches RB0 et RB1 en entrée et les autres en sortie.

 La manipulation des données (lecture/écriture) sur les ports est programmée à travers les registres PORTA, PORTB, PORTC, PORTD et PORTE.


 $\underline{Exemple}$ : bsf PORTC, 7 → positionne la broche RC7 à 1 (écriture).

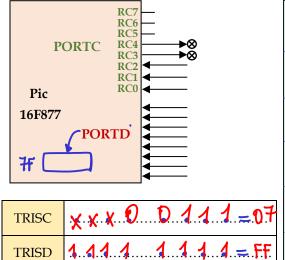
movwf PORTC → permet de sortir le contenu de W sur PORTC (écriture).

movf PORTC, w → récupère l'état de PORTC dans W (lecture).

#### Exercice

Ecrire le programme assembleur permettant la configuration suivante :




ATC/2e STE

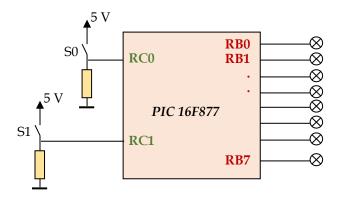
TRISA = $xxx.0.0.0.1.1= 03$
TRISB = $0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0$
TRISC =Q.Q.Q.1.1.1.1Q.41D
TRISD = .44.4.4.4.4.4= FF
TRISE = .xxxxx4x.x= 04

bcfSTATUS, RP1 bsfSTATUS, RP0	; activer banque 1
morlyOx.0.3 morufT.RISA	; configurer port A
LlrfT.RISB	; configurer port B
movelyOx1D moverfTRISC	; configurer port C
movey TRISD	; configurer port D
bsf TRISE,2	; configurer port E
bof STATUS, RP1	; activer banque 0

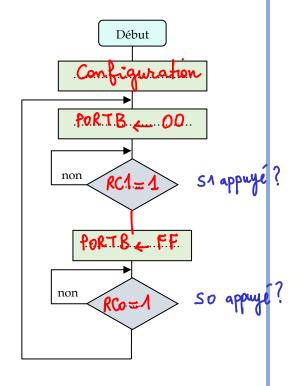
#### **Exercice**

- Configurer les ports conformément à la figure
- Allumer les 2 LED du PORTC Lire le contenu de PORTD pour le stocker dans le registre d'adresse 7F




bof STATUS, RPA bof STATUS, RPO	; activer page 1
mover TRISC	; configurer le port C
movew Ox FF movue TRISD	; configurer le port D
bof STATUS, RPD	; retour à page 0
bsf PORTC, 3 bsf PORTC, 4	; allumer les 2 Leds du portC
move PORTO W.	; lire et ranger la valeur du port D ; dans le registre 7F

#### Exercice


Au repos les LEDs sont éteintes.

Une action sur le bouton poussoir **S1** allume toutes les LEDs. Une action sur le bouton poussoir **S0** éteint toutes les LEDs. *Et ainsi de suite.* 

Fournir l'organigramme et le programme



TRISB	0.0.0.0.0.0.0.0.0.0
TRISC	x.x.x.x.xx4.4 = .03



```
.Status, RP1
                                             ; page 1
            STATUS, RPD
                                             ; configurer PORTB en sortie
              w...0x03....
                                              ; configurer PORTC
                                             ; page 0
boucle1
                                             ; éteindre les LEDs
boucle2
                                             ; Si RC1 = 1 (signifiant si S1 appuyé)
                                             ; sinon se brancher à "boucle2"
                                             ; si oui allumer les LEDs
boucle3
                                             ; Si RC0 = 1
                                             ; sinon se brancher à "boucle3"
                                             ; Se brancher à "boucle1" pour éteindre de nouveau
```

# *⇒* <u>Techniques de comparaison des registres</u>

#### Bits indicateurs d'état Z et C du registre STATUS

Le bit **Z** est l'indicateur de **Zéro** : **Z = 1** si le résultat d'une opération arithmétique ou logique est **zéro** ;

**Z = 0** si le résultat est **différent de zéro**.

Le bit C est l'indicateur de signe : C = 1 si le résultat d'une soustraction est positif ;

**C** = **0** si le résultat est **négatif**.

#### F1 et F2 étant deux registres, compléter ce tableau :

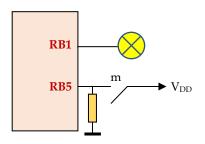
Action	Code assembleur
Si F1 = 0	906359.767.9.34
Si F1 = F2	mont. F1, w; W=F2; effectuer la soustraction entre F1 et F2 puis contrôler le bit Z subwit. F1, w; w=F1=F2.  bliss STATUS, Z; Z=1?
Si F1 < F2	movfF.2, w; effectuer la soustraction entre F1 et F2 puis contrôler le bit C subwfF1, wbtfscSTATUS, C

#### *⇒* <u>Temporisation et sous-programme</u>

Un sous-programme est une séquence d'instructions chargée d'effectuer un traitement particulier. Les sous-programmes permettent ainsi de décomposer un programme en plusieurs sous-parties.

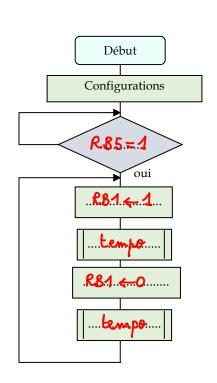
Programme principa	al Sous-programme
CALL X	X
CALL X	

**CALL**: instruction d'appel du sous-programme. **RETURN**: instruction de retour au programme appelant.


#### Exercice

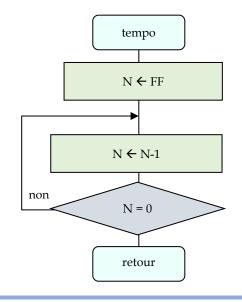
Faire clignoter à la fois et à 1 Hz, les 8 LED supposées montées sur PORTB. On suppose déclaré un sous-programme "tempo" qui réalise une temporisation de 0,5 s.

#### Variante utilisant l'instruction comf F, d


ATC/2e STE

Faire clignoter la **LED** du montage ; **m** est le bouton marche. Réaliser la temporisation par une boucle de retard (temporisation logicielle) et la confier à un sous-programme.




# Programme principal

ATC/2e STE



```
N equ 0x20
                            ; Initialisation des variables
           STATUS, RP1
                            ; page 1
       bsf STATUS, RPO
      movely 0x20
                             ; configurer port B
                             TRISB xx1x x x0x=20
      mover TRISB
        of STATUS, RP1
                            ; page 0
      bef STATUS, RPO
       befss PORTB, 5
                            ; tester si RB5 = 1 et saut si vrai
test
           to test
                            ; revenir à 'test'
           PORTB, 1
lab
                            ; allumer
                            ; appel du sous-programme 'tempo'
       bcf....Port.B.1
                            ; éteindre
                            ; temporisation
                            ; revenir à 'lab'
tempo Movlw 0xFF
                            ; sous prog. de temporisation
       movwf N
boucle Decfsz N, f
       Goto boucle
       Return
```

#### Sous-programme de temporisation



```
tempo moylw 0xFF
                                  ; N \leftarrow FF
loop
                                 ; décrémenter N et tester si N=0
                                 ; sinon retour à l'étiquette 'loop'
                                 ; retour au programme principal
```

#### Durée de temporisation du sous-programme

La fréquence f de fonctionnement interne du PIC est le quart de celle du quartz ; soit f = Fosc/4.

- Pour un quartz de Fosc = 20 MHz  $\Rightarrow$  f = 5 MHz  $\Rightarrow$  1 cycle = 1/f = 0,2  $\mu$ s;
- Pour un quartz de Fosc =  $4 \text{ MHz} \Rightarrow f = 1 \text{ MHz} \Rightarrow 1 \text{ cycle} = 1 \text{ }\mu\text{s}$ .
- Pour un quartz de **4MHz**, 1 cycle instruction = **1µs**;
- Toutes les instructions du sous prog. prennent 1 cycle sauf goto et return qui en prennent 2.

Calcul de la durée la temporisation :

#### Multiples durées de temporisation

Augmenter la durée de temporisation peut être obtenu par imbrication des boucles de retard.

```
tempo movilu OxFF
moving N
loop decfse Nif
```

Durée T = ... H.S. U.S. avec un quartz de ... LANHZ...

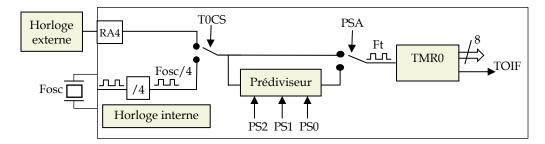
```
tempo1 movilu 0xFF

movius NA

loop1 call tempo

decfs2 N1, 5

gote loop1


return
```

Durée T1 = = 155 x 768 µs = 196 ms

Durée T2 = ... = 255 x 196 m5 ~ 50 A

#### ⇒ Module Timer 0

- Le Timer 0 est un compteur 8 bits qui peut servir de temporisateur (timer) ou de compteur d'évènements ;
- TMR0 est un registre associé au Timer 0.



### Configuration

Timer 0 est configuré par le registre OPTION_REG

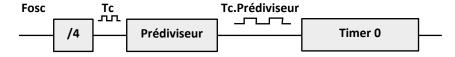
Registre <b>OPTION_REG</b>	DDDII	TA TEMPOR	TO 00	TOOT	<b>D</b> C 4	D.C.0	201	700	
_	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	
(pages 1 et 3)								1	

- L'horloge peut être interne ou externe :
  - TOCS = 0 → horloge interne (de fréquence Fosc/4); TOCS = 1 → horloge externe appliquée à la broche RA4.
- On peut ou non utiliser le prédiviseur :

 $PSA = 0 \rightarrow le \text{ prédiviseur est affecté au timer TMR0};$ 

PSA = 1 → le prédiviseur est affecté au Watchdog WDT.

Le facteur de division de la fréquence est fixé par les bits PS2, PS1 et PS0


PS2 PS1 PS0	000	001	010	011	100	101	110	111
Division de fréquence de TMR0 par	2	4	8	16	32	64	128	256

#### Timer 0 en mode timer

Dans ce mode, Timer 0 est piloté par l'horloge interne du microcontrôleur et sert de temporisateur. La durée de temporisation est **T = Tc.Prédiviseur.(256 - TMR0)** 

**Tc** : durée d'un cycle horloge. **Prédiviseur** : valeur de prédivision.

TMR0 : valeur de départ du registre TMR0.



#### Temporisation par scrutation du débordement du Timer 0

Au débordement du timer (passage de FF à 00), le bit TOIF du registre INTCON passe à 1.

Registre INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF
(pages 0, 1, 2 et 3)								

#### **Exercice**

On désire obtenir une temporisation de **10 ms**, trouver le mot de configuration (OPTION REG) et la valeur initiale de TMR0. On donne Fosc = 4 MHz.

Écrire, ensuite, un sous-programme qui met en œuvre cette temporisation en scrutant le bit TOIF.

En mode timer, on utilise l'horloge interne : TOCS = .Q

Et si on choisit une prédivision = ...**6.4**...., le mot de configuration sera :

(choix arbitraire)

OPTION REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1
OPTION_REG	.χ.	. <u>X.</u>	0	. <b>X</b> .	0	<b>∆</b> ,	0	1	$=(05)_{16}$

$$TMR0 = 256 - \frac{10 \times 10^{-5}}{40^{-6} \cdot 64} \approx 100$$

<u>Sous-programme de temporisation de 10 ms par scrut</u>ation du bit TOIF

```
movlu 0x05
                                  ; configurer Timer 0 via OPTION_REG
       MOWE OPTION-REG
tempo10ms movie d'100'
                                  ; valeur de départ du registre TMR0
           movwe TMRO
                INTCON, TOIF
                                 ; baisser le drapeau càd mettre TOIF = 0
                                 ; tester si TOIF = 1
attente
                                  ; sinon revenir à 'attente'
                                  ; retour au programme principal
```

#### Exercice

Donner la valeur initiale de TMR0 et trouver le mot de configuration(OPTION_REG) pour obtenir la temporisation maximale possible. On donne Fosc = 4 MHz.

Écrire, ensuite, un sous-programme qui met en œuvre cette temporisation.

La temporisation est maximale quand TMRO = 0 (et frédiv. = 256)

Tmax = Tc · frédiv (256 - TMRO) = 10-6 . 256.256 = 65,5 ms

OPTION REG	_		•				PS0		( _ ~ '	<b>\</b>
<u>"</u> X.	<b>X</b> .	0	. <b>X</b> .	O.	1.	4.	1.	11	104	)16

Sous-programme de temporisation maximale

```
movly 0x07
                                 ; configurer Timer 0 via OPTION_REG
         maw & OPTION_REG
tempomax CUR TMRO
                                 ; valeur de départ du registre TMR0
                                ; baisser le drapeau càd mettre TOIF = 0
              INTCON, TOIF
         bless INTCON, TOIF
attente
                                 ; tester si TOIF = 1
                                 ; sinon revenir à 'attente'
          ...return....
                                 ; retour au programme principal
```

#### ⇒ <u>Le module WDT Watchdog Timer ou chien de garde</u>

C'est un compteur 8 bits incrémenté par une horloge indépendante de l'horloge système (même si le  $\mu$ C est en mode sleep). Lorsqu'il déborde (après 18 ms), deux situations sont possibles :

- Si le  $\mu$ C est en fonctionnement normal, cela provoque un RESET;
- Si le μC est en mode SLEEP, cela provoque un WAKE-UP (l'exécution du programme reprend).

#### **Configuration**

Registre OPTION_REG (pages 1 et 3)

r	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
---	------	--------	------	------	-----	-----	-----	-----

Il est possible d'augmenter la durée par utilisation du prédiviseur (celui partagé avec le timer 0). Le coefficient de prédivision est fixé par les bits PS0, PS1 et PS2 :

- $PSA = 0 \rightarrow le \text{ prédiviseur est affecté au timer TMR0}$ ;
- PSA = 1 → le prédiviseur est affecté au Watchdog WDT.

Le coefficient de prédivision de la fréquence est fixé par les bits PS2, PS1 et PS0 :

PS2 PS1 PS0	000	001	010	011	100	101	110	111
Division de fréquence par	1	2	4	8	16	32	64	128

Le WDT est activé par la directive __CONFIG _WDT_ON.

#### **Mode SLEEP**

Dans ce mode, l'horloge système est arrêtée ce qui suspend l'exécution du programme. Pour sortir du mode SLEEP et donc continuer l'exécution, il faut provoquer un WAKE-UP par :

- Un RESET externe dû à l'initialisation du PIC ; dans ce cas, l'exécution recommence ;
- Ou par un débordement du chien de garde WDT s'il est activé ; dans ce cas, l'exécution continue.

#### Temporisation par le WDT combiné au mode Sleep

On met le  $\mu$ C dans le mode Sleep ; le programme est alors suspendu et reprendra après débordement du WDT.

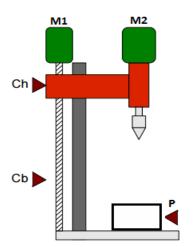
#### Exercice

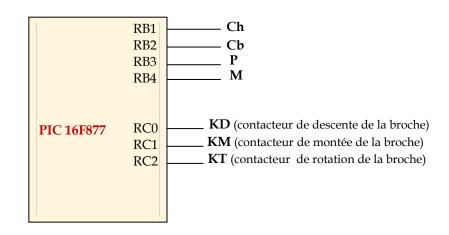
Faire clignoter une LED montée sur la ligne RC0.

On optera pour une prédivision par ...  $\downarrow$  .... donc PSA = ... et PS2 PS1 PS0 = ... 0.10...

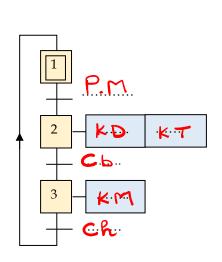
Donc

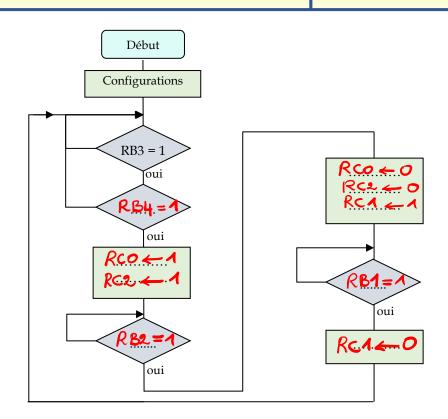
OPTION REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	
OF HON_KEG	×	<b>X</b>	<b>X</b>	×	1	Ö	<b>₹</b> .	Ö	= 0A


La durée du WDT étant de Avec le prédiviseur elle devient


#### Durées possibles du WDT

PSA	PS2, PS1, PS0	Taux de prédivision du WDT	Mot de configuration (OPTION_REG)	Durée indicative
1	000	.4	x.x.x.x.1000 = 0.8	18ms
1	001	. <b>2</b>	x x x x 1001 = 09	36.ms
1	010	.4	x x x x 1010 = 0 A	72 ms
1	011	· <b>\$</b> ····	x-x-x-10110 B	144 ms
1	100	.16	X-X-X-1-100 = 0 C	288.ms
1	101	32.	x-x-x-x-4404=.0. D	.5.76.ms
1	110	64	XXXX 1/10 = 0 E	1,152 s
1	111	128	xx.xx.1111 = 0 F	2,304 s


#### Implantation du GRAFCET dans un microcontrôleur


Le système est une perceuse automatique simple. Lorsque la pièce à usiner est en place (**P**), un appui sur le bouton **M** lance le cycle : la machine descend jusqu'à **Cb** puis remonte pour s'arrêter en **Ch**.





Fournir le GRAFCET, le traduire en organigramme puis en un programme assembleur pour le microcontrôleur PIC16F877.





```
bcf STATUS, RP1
                                     ; page 1
      bsf STATUS, RP0
                                                       * X X 1 1 1 1 1 X
      movie Ox1E
                                     ; configurer le port B
      movuf TRISB
                                                       XXXX XOOO
      elrf TRISC
                                     ; configurer le port C
      bcf STATUS, RP0
                                     ; page 0
      bcf STATUS, RP1
      btess PORTB,3
test1
                                     ; si RB3 = 1
        ERSS PORTB, 4
                                     ; \sin RB4 = 1
          PORTC, O
                                     ; RC0 \leftarrow 1
        PORTC,2
                                     ; RC2 ← 1
      btess PORTB, 2
test2
                                     \sin RB2 = 1
          PORTC, O
                                     ; RC0 \leftarrow 0
         PORTC,2
                                     ; RC2 \leftarrow 0
           PORTC,1
                                     ; RC1 ← 1
      btfss. PORTB, 1
test3
                                     ; si RB1 = 1
           PORTC, 1
                                     ; RC1 \leftarrow 0
      goto test 1
                                     ; recommencer
```

#### *⇒ Interruptions*

Une interruption provoque l'arrêt du programme principal pour aller exécuter un sous-programme, dit d'interruption, qui se trouve à l'adresse <u>0004</u>.

À la fin de cette procédure, le microcontrôleur reprend le programme principal à l'endroit où il l'a laissé.

# Sources d'interruption

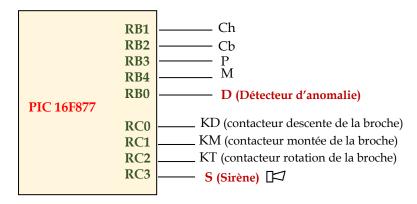
Interruption	Source d'interruption	Bit de	Flag	Interruption
		validation		périphérique
TOI	Débordement de Timer0	TOIE	TOIF	Non
INT	INT Front sur la broche RB0/INT (le front de déclenchement est configuré par le bit INTEDG)		INTF	Non
INI			11 N 1 1	TVOIT
RBI	Front sur une broche RB4-RB7	RBIE	RBIF	Non
ADI	Fin de conversion A/N	ADIE	ADIF	Oui
TMR1I	Débordement de Timer1	TMR1E	TMR1F	Oui
TMR2I	Timer2 a atteint la valeur maxi	TMR2E	TMR2F	Oui
EEI	Fin d'écriture en EEPROM	EEIE	EEIF	Oui

- Toutes les interruptions peuvent être validées/interdites à la fois par le bit GIE;
- Chaque interruption peut être validée/interdite par son bit de validation individuel;
- Tun bit drapeau (flag) permet de savoir si l'évènement déclenchant l'interruption arrive.

#### L'interruption INT

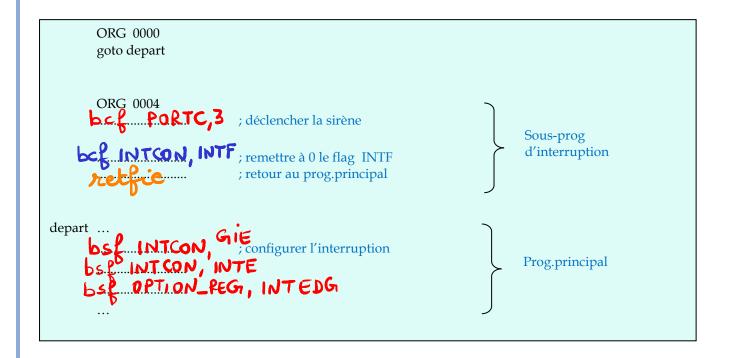
Cette interruption externe arrive via la broche RBO/INT, sa mise en œuvre nécessite de :

- Mettre à 1 le bit **GIE** pour l'autorisation globale de toutes les interruptions ;
- Mettre à 1 le bit **INTE** afin d'autoriser l'interruption sur RB0/INT;
- Choisir le front (montant ou descendant) qui déclenche l'interruption par le bit <u>INTEDG</u> du registre OPTION_REG.


Le bit <u>INTF</u> (flag) est un indicateur, il est mis à 1 si une interruption arrive sur RB0/INT. Il doit être remis à 0 dans le programme de traitement de l'interruption.

Registre <b>INTCON</b>	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF

### Exercice : mise en œuvre de l'interruption INT


Il s'agit d'alerter les responsables en cas de danger autour de la perceuse de l'exercice traité plus haut : en cas d'anomalie signalée par le détecteur D sur la broche RBO, la sirène S montée sur RC3 entre en action

On va charger le programme principal de l'opération de perçage et la routine d'interruption du traitement de l'anomalie



Configuration de l'interruption INT (sur RB0)

Registre	bit	Action
INTCON	GIE = 1	Autorisation générale de toutes les interruptions
INTCON	INTE = 1	Autorisation de l'interruption INT (sur RB0)
OPTION_REG	INTEDG = 1	Choix du front montant sur RB0

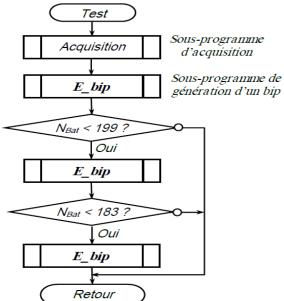


# Exercice 1: examen national 2018, session de rattrapage

#### Tâche 4: Test du niveau de la charge de la batterie (voir document DRES 04)

A chaque mise sous tension du chariot, l'utilisateur est informé du niveau de la charge de la batterie par une signalisation sonore. Pour cela, un sous-programme « Test » permet de tester la tension de la batterie  $E_{Bat}$  et d'émettre des bips sonores :

- $E_{Bat} \geq 12 V$
- → charge convenable: 1 bip;
- $11 \ V \leq E_{Bat} < 12 \ V \rightarrow charge movenne : 2 \ bips ;$
- $\bullet \quad E_{Bat} < 11 \ V$
- → charge insuffisante (batterie déchargée) : 3 bips.


Le principe de ce test consiste à acquérir la tension  $U_{Bat}$  (image de la tension de la batterie  $E_{Bat}$ ) et à la convertir en une valeur numérique  $N_{Bat}$ ; ensuite, on compare cette valeur aux seuils correspondants définis dans le tableau suivant :

_	$E_{Bat} = 11 V$	$E_{Bat} = 12 V$
$U_{Bat}(V)$	3,59	3,92
N _{Bat} en décimal	183	199

L'organigramme du sous-programme « Test » est représenté ci-contre :

On note adr_Nbat l'adresse de la case mémoire contenant la valeur numérique  $N_{Bat}$ .

Q39) En utilisant le jeu d'instructions du microcontrôleur donné sur le document DRES 05, compléter le programme Assembleur correspondant organigramme. 6 pts

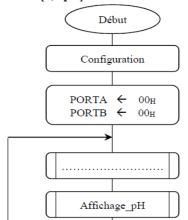


Q39) Programme assembleur:

Label	Mnémonique	Opérande	Commentaire
Test	CALL	Acquisition	; Appel au sous-programme Acquisition
	CALL	E_bip	; Appel au sous-programme E_bip
	MOVLW	d:.1.99 '	; Charger W par la valeur 199
	SUBWF	Adr_NBat,W	; Comparer (adr_NBat) à W
	BTF.S.C.	S.T.ATUC,C	; Sauter si NBat < 199
	GOTO	Fin	; Aller à la fin
	CALL	E_bip	; Appel au sous-programme E_bip
	MOYLW	.d'.183'	; Charger W par la valeur 183
	SUBW.F.	Adr_NBat, W	; Comparer (adr_NBat) à W
	BTFSC	STATUS,C	; Sauter si NBat < W
	. G10.T0	····Fin··	; Aller à la fin
	CALL	E_bip	; Appel au sous-programme E_bip
Fin	RETURN		

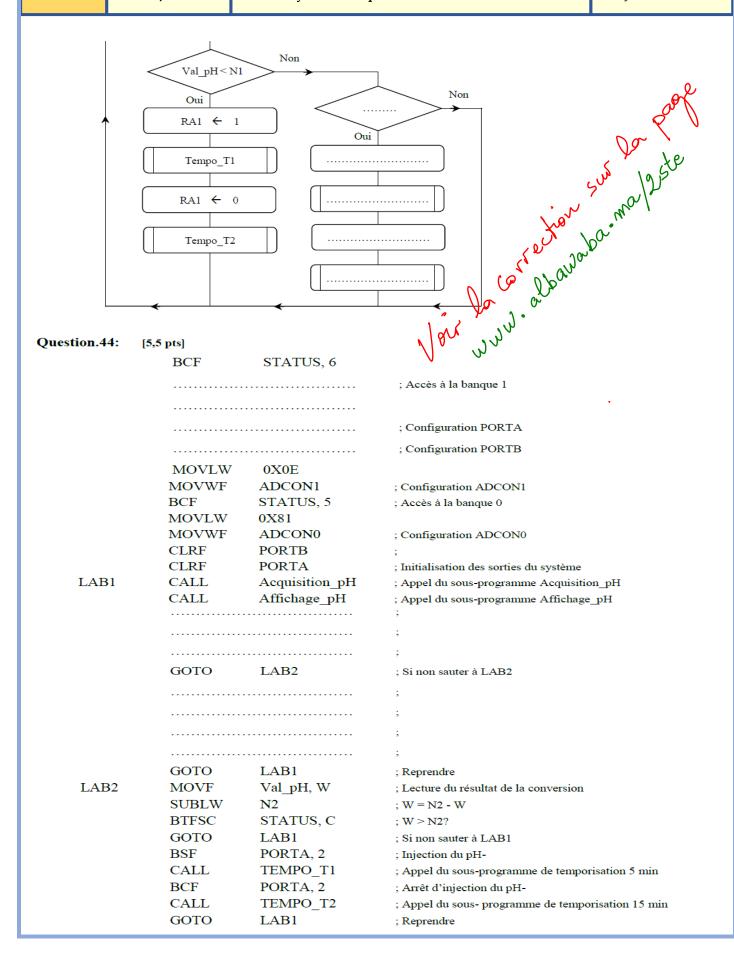
### Exercice 2 : examen national 2019, session de rattrapage

#### Tâche 2 : Programme de régulation du degré d'acidité pH


Le programme de régulation agit selon l'algorithme suivant :

- Acquisition du niveau de pH;
- Affichage du niveau de pH sur l'indicateur (BARGRAPH);
- Si le pH mesuré est inférieur à 6,9 (N < N1) alors :</li>
  - ✓ Injection pendant 5 minutes du correcteur de pH+ par la mini-pompe doseuse pH+;
  - ✓ Arrêt de la mini-pompe pendant 15 minutes, ce qui permet de stabiliser l'eau traitée ;
- Si le pH mesuré est supérieur à 7,7 (N > N2) alors :
  - ✓ Injection pendant 5 minutes du correcteur de pH- par la mini-pompe doseuse pH-;
  - ✓ Arrêt de la mini-pompe pendant 15 minutes, ce qui permet de stabiliser l'eau traitée.

On dispose des sous programmes suivants :


- Acquisition_pH: qui permet de convertir le signal U3 image du pH en un nombre N sur 8 bits, stocké dans la case mémoire appelée Val_pH;
- Affichage_pH: qui permet d'afficher le pH mesuré sur le BARGRAPH à diodes LED connecté sur le port B;
- TEMPO_T1: est un sous-programme de temporisation T1 = 5 min;
- TEMPO_T2: est un sous-programme de temporisation T2 = 15 min.
- Q.43- En vous aidant de l'algorithme ci-dessus, compléter l'organigramme correspondant.
  [4,5 pts
  La configuration du PIC16F876 est comme suit :
  - RA2: Sortie logique pour la commande de la mini-pompe doseuse pH-;
  - RA1 : Sortie logique pour la commande de la mini-pompe doseuse pH+;
  - RA0 : Entrée analogique pour l'acquisition de la tension U₃ image du pH de l'eau de la piscine ;
  - RB0...RB7 : Sorties logiques pour la commande du BARGRAPH.
- Q.44- En vous aidant du jeu d'instructions fourni en DRES 04 page 14, compléter le programme assembleur de régulation du pH. (Les bits non utilisés du registre TRISA sont à 0).

#### Question.43: [4,5 pts]

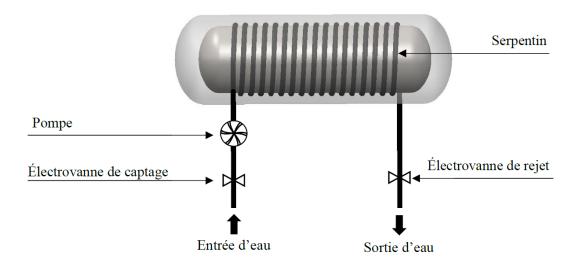


N1 : est la valeur de N correspondante à un pH de 6,9.

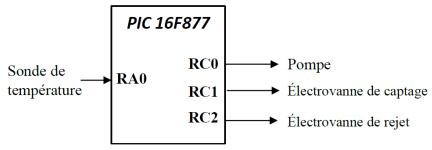
N2 : est la valeur de N correspondante à un pH de 7,7.



Exercice 3: examen national 2021, session normale


### <u>Tâche 2</u>: Commande du système de refroidissement à l'eau de mer

Les constituants électriques de l'hydrolienne, en particulier les convertisseurs électroniques de puissance, sont confinés à l'intérieur du convertisseur AC/AC (l'enceinte posée au fond marin et abritant l'ensemble du matériel électrique de l'hydrolienne).


De ce fait, les composants électroniques peuvent être portés à des températures excessives. Cela nécessite de prévoir un moyen de refroidissement afin de protéger l'électronique embarquée.

On envisage de maintenir la température à l'intérieur du convertisseur AC/AC entre 20 °C et 30 °C par un système de refroidissement à l'eau de mer.

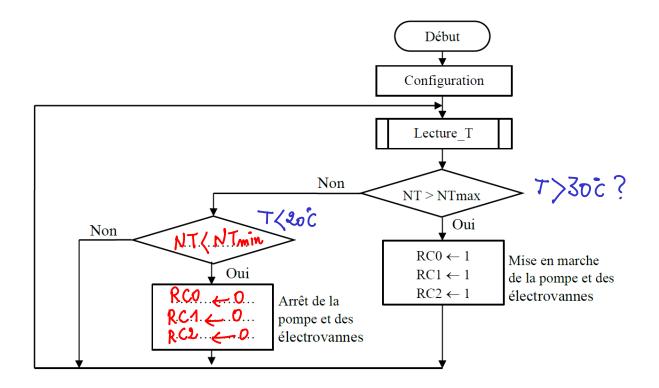
Moyennant deux électrovannes et une pompe à eau de mer, le système fait circuler l'eau dans un serpentin (tube métallique enroulé en spirale) inséré dans la double coque du convertisseur AC/AC. C'est un refroidissement en circuit ouvert ; en effet, après circulation dans le serpentin, l'eau est rejetée dans la mer. Une sonde mesure la température à l'intérieur du convertisseur AC/AC.



La commande de ce système de refroidissement est réalisée par un microcontrôleur PIC 16F877 selon l'architecture suivante :



# Programme de commande de ce système de refroidissement


# Éléments du programme

- Lecture_T : sous-programme chargé de lire, sur la ligne RA0, l'information issue de la sonde de température et de ranger le code numérique correspondant dans le registre NT.
- NT : registre qui contient le code numérique de la température mesurée par la sonde.
- NT_{min} et NT_{max} : sont les codes numériques qui correspondent respectivement à 20 °C et 30 °C. Séquences du programme
  - Appel du sous-programme Lecture_T;
  - Evaluation de la température lue :
    - Si  $NT > NT_{max}$ , on met en marche la pompe et les deux électrovannes ;
    - Si NT < NT_{min}, on arrête la pompe et les deux électrovannes ;
  - Reprendre une nouvelle lecture de la température.

Question: 43. Compléter l'organigramme traduisant les séquences ci-dessus.

2 pts

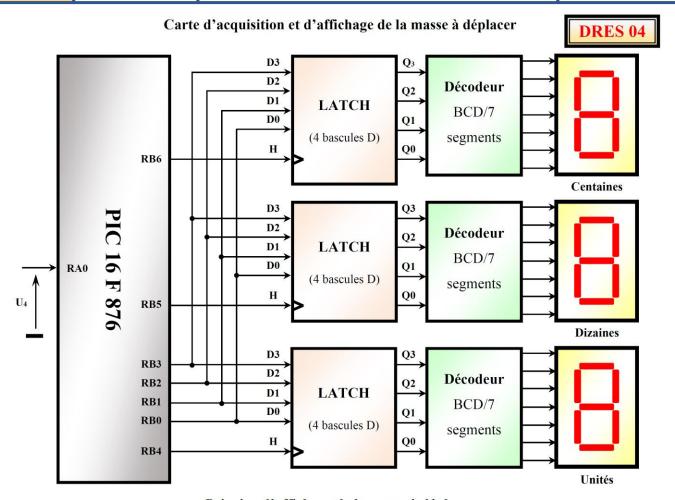
Question : 44. En vous aidant du jeu d'instructions du DRES 04, compléter le programme assembleur correspondant.



Instruction		Commentaire	
	BCF STATUS, RP1 BSF STATUS, RPO	; Activer la page 1	
	CLRF TRISC	; Configurer PORTC en sortie	
	BSF TRISA, 0	; Configurer la ligne RA0 en entrée	
	BCF STATUS, RP1 BCF STATUS, RP0	; Activer la page 0	
repeter	CALL Lecture_T	; appel du sous-programme "Lecture_T"	
	MOVLW NTmax SUBWF NT, W STATUS, C	; W ← NTmax ; W ← NT – NTmax ; tester si le bit C = 1	tester si NT > NTmax
	GOTO saut	; si non, se brancher à l'étiquette "saut"  ; si oui, mettre en marche la pompe et les deux électrovannes  ; reprendre	
	BSF PORTC, 0 BSF PORTC, 1 BSF PORTC, 2		
	GOTO repeter		
saut	MOVLW NTMIN SUBWF NT, W BTFSC STATUS, C	; W $\leftarrow$ NTmin ; W $\leftarrow$ NT – NTmin ; tester si le bit $C = 0$	tester si NT < NTmin
	GOTO repeter	; si non, reprendre	
	BCF PORTC, 0 BCF PORTC, 1 BCF PORTC, 2	; si oui, arrêter la pompe et les deux électrovannes	
	GOTO repeter ; reprendre		

#### Exercice 4 : examen national 2022, session normale

#### Tâche 2 : Affichage de la masse à déplacer


Le monte-charge étudié est équipé d'une carte d'acquisition et d'affichage de la masse  $m_C$  à déplacer (voir document ressources **DRES 04**). Cette carte est à base du microcontrôleur **PIC 16 F 876**.

L'affichage se fait en décimal sur 3 afficheurs à 7 segments, équipés chacun d'un décodeur BCD/7 segments et d'un Latch 4 bits (verrou à 4 bascules D).

On dispose des sous programmes suivants :

- Acquisition: Sous-programme qui convertit le signal U₄ image de la masse m_C à déplacer en un nombre
   N sur 10 bits, stocké dans les registres internes du CAN (ADRESH: ADRESL).
- Conv_Kg: Sous-programme qui convertit la valeur numérique N résultat du convertisseur CAN (ADRESH: ADRESL) en un nombre N' exprimé en Kg, stocké dans deux cases mémoires appelées Val mc H et Val mc L.
- Conv_BCD: Sous-programme qui convertit le nombre N' en décimal (code BCD), stocké dans les cases mémoires appelées Unite_mc (pour les unités), Dizaine_mc (pour les dizaines) et Centaine_mc (pour les centaines);
- Q.47 En vous aidant du document ressources DRES 04, compléter l'organigramme de l'acquisition et de l'affichage de la masse mc à déplacer.
- Q.48 En vous aidant du jeu d'instructions fourni en document ressources DRES 05, compléter le programme assembleur correspondant.

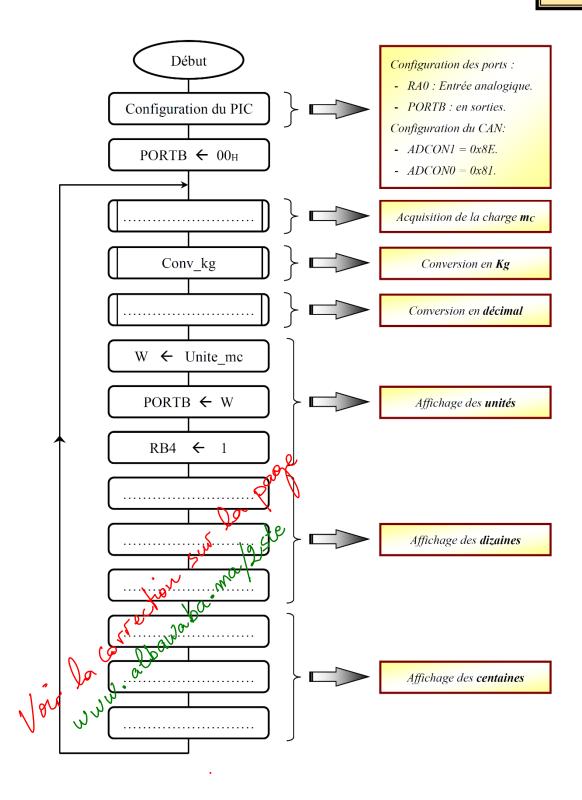
  5 pts



Principe d'affichage de la masse à déplacer

Si  $N'=2DE_H$  alors N'=734 en décimal donc N'=0111.0011.0100 en BCD

Donc, après appel du sous-programme "Conv BCD":


- Unité_mc =  $0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0$  (4)
- Dizaine mc = 0000.0011 (3)
- Centaines mc =  $0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1$  (7)

Pour afficher la masse à déplacer  $m_C$  en décimal sur les **trois** afficheurs (N'= **2DE**  $_H$ = **734** en décimal), on effectue les opérations suivantes :

- Acquisition de la masse à déplacer par appel du sous-programme "Acquisition";
- Convertir le nombre N résultat de la conversion analogique numérique en un nombre N', exprimé en kg par appel du sous-programme "Conv_Kg";
- Convertir N' en BCD par appel du sous-programme "Conv BCD";
- Écrire la valeur des unités '4' sur les entrées  $D_3...D_0$  de l'afficheur des unités avec H = 0;
- Mettre H à 1 pour mémoriser la valeur des unités par les sorties Q₃..Q₀ (créer un front montant sur l'entrée d'horloge des unités);
- Écrire la valeur des dizaines '3' sur les entrées  $D_3...D_0$  de l'afficheur des dizaines avec H = 0;
- Mettre H à 1 pour mémoriser la valeur des dizaines par les sorties Q₃...Q₀ (créer un front montant sur l'entrée d'horloge des dizaines);
- Écrire la valeur des centaines '7' sur les entrées D₃...D₀ de l'afficheur des centaines avec H = 0;
   Mettre H à 1 pour mémoriser la valeur des centaines par les sorties Q₃...Q₀ (créer un front montant sur l'entrée d'horloge des centaines).

**Q.47** -

DREP 09



Q.48 -

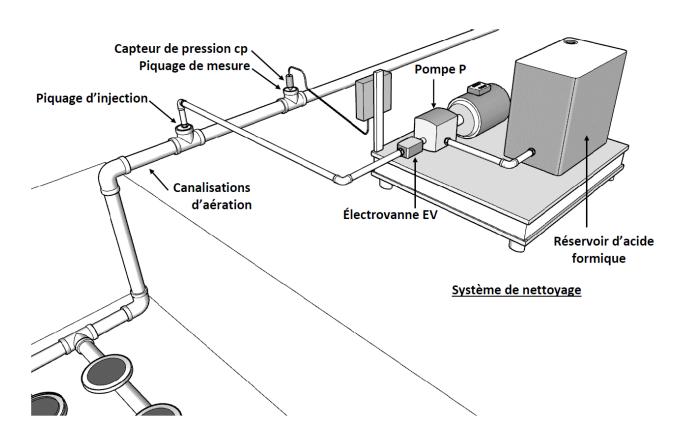
DREP 10

**BCF** STATUS, 6 ; accès à la BANK 1 ..... ; PORTB en sortie ; Mot de commande du registre TRISA ..... MOVWF **TRISA** ; RA0 en entrée MOVLW 0x8E ; Mot de commande du registre ADCON1 **MOVWF** ADCON1 ; Configuration du CAN interne **BCF** STATUS, 5 ; Retour en banque mémoire 0 **MOVLW** 0x81; Mot de commande du registre ADCON0 MOVWF ADCON0 ; Configuration du CAN interne **CLRF PORTB** ; Initialisation des sorties Loop CALL Acquisition ; appel du sous-programme "Acquisition" CALL Conv_BCD ; appel du sous-programme "Conv_BCD" ...... Centaine mc, W MOVF ; Lecture de la valeur des centaines **MOVWF PORTB** ; Ecriture des centaines dans le PORTB **BSF** PORTB, 6 ; Affichage des centaines **GOTO** Loop

#### Exercice 5 : examen national 2023, session de rattrapage

#### <u>Tâche 2</u>: programmation du cycle de nettoyage des diffuseurs fines bulles

Le colmatage (bouchage des orifices des membranes des diffuseurs causé par les dépôts) est le problème majeur observé dans le système d'insufflation par diffuseurs fines bulles.

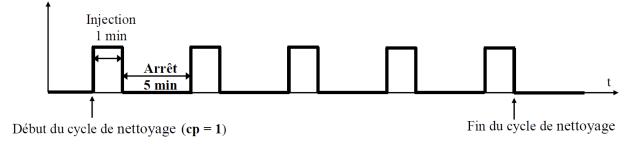

Il est donc fortement recommandé de procéder de façon régulière à un nettoyage préventif des canalisations d'aération

Le nettoyage par injection de l'acide formique est le remède le plus couramment utilisé.

#### Système de nettoyage

Le système de nettoyage (figure ci-dessous) est équipé d'une pompe **P** et d'une électrovanne d'isolement **EV** ; la pompe puise l'acide formique dans un réservoir. Le produit est pulvérisé et injecté dans les canalisations d'aérations par le biais d'un piquage.

Le cycle de nettoyage se déclenche lorsque la perte de charge (chute de pression), détectée par un capteur de pression **cp**, dépasse un certain seuil




1 pt

Le dispositif de nettoyage est géré par microcontrôleur (PIC 16F877). Le cycle de fonctionnement de ce dispositif est réalisé de la manière suivante :

Dès que le capteur « cp » détecte une perte de charge de 30 mbar (cp = 1), on réalise 5 injections d'acide formique d'une minute chacune (1 min), avec un arrêt de 5 minutes entre deux injections successives.

Le chronogramme suivant illustre les étapes du cycle de nettoyage :



L'équipement électrique du nettoyeur est connecté au microcontrôleur comme suit :

Capteur de pression cp  $\rightarrow$  RC1 Pompe P  $\rightarrow$  RC2 Électrovanne EV  $\rightarrow$  RC3

- **Q.40)** Quelle est la durée totale  $T_n$  d'un cycle de nettoyage (en min)?
- Q.41) Compléter l'organigramme de ce cycle (sont déclarés : une variable N de comptage ainsi que deux sous-programmes T_1min et T_5min qui réalisent respectivement des temporisations de 1 min et de 5 min);
  2 pts
- Q.42) Compléter le programme assembleur correspondant (le jeu d'instructions du microcontrôleur est fourni en DRES 02).

Les deux sous-programmes de **T_1min** et **T_5min** font appel à une routine qui se répète plusieurs fois pour réaliser la temporisation désirée. Le code assembleur de la routine est le suivant :

Routine de temporisation								
	MOVLW	d'233'						
	MOVWF	N1						
b4	DECFSZ	N1, f						
	GOTO	b4						

N1 est une variable de comptage

- Q.43) Citer une méthode, autre que la boucle de retard, pour faire une temporisation par le microcontrôleur PIC 16F877;
- Q.44) Sachant que l'oscillateur est à base d'un quartz de fréquence  $F_{osc} = 4$  MHz et en se référant au DRES 02, vérifier que la durée d'un cycle instruction est  $T_{cy} = 1 \, \mu s$ ;
- Q.45) En se référant au jeu d'instructions du DRES 02, calculer le nombre total de cycles Ncy que prend l'exécution de la routine de temporisation donnée ci-dessus ;
- **Q.46)** En déduire la temporisation T (en ms) obtenue par cette routine.

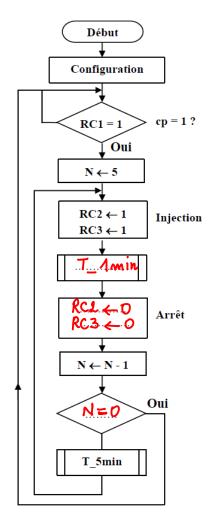
# 1 pt

#### Jeu d'instructions du PIC 16F877

DRES 02

Note: Les instructions de test (DECFSZ, INCFSZ, BTFSC et BTFSS ayant 1(2) cycles): 1 cycle s'il n'y a pas le saut et 2 cycles en cas de saut

#### Durée d'un cycle instruction


La durée  $T_{cy}$  d'un cycle instruction est égale à 4 fois la période  $T_{osc}$  de l'oscillateur ;

Soit:  $T_{cy} = 4$ .  $T_{osc}$ 

$40/ \text{ Tn} = 4 \times 5 + 5 \times 1 = 25 \text{ min}$
43/ Autres méthodes: Timer / WDT + Sleep 44/ on a Tay = 4. Tosa = $\frac{4}{\text{Fosa}}$ = $\frac{4}{10^6}$ = $10^6$ s = 1 µs
$44/$ on a $T_{cy} = 4.$ Tasc $= 4 = 4 = 10^6 \text{ s} = 1 \mu \text{ s}$
Fosc 4×106
45/ movles 1 azle
moduf - 1 cy de
decfin (sans sant) -> 232×1 cycle  decfin (avec sant) -> 1 x 2 cycles  goto -> 232 x 2 cycles  dane Ney = 700 cycles
dectes (avec cont). 1 x 2 cucles
9 de 133 x 9 culto
1 Zoone
$aenc \qquad Ney = 700 \text{ yr} cas$
$46/T = 700 \times 1 \mu s = 700 \mu s = 0,7 ms$

Q.41)

ATC/2e STE



Q.42)

bl	GOTO	PORTC, 1	Tester si RC1 = 1
	mover	d'5'	N ← 5
b2	BSF	PORTC, 2	Injection
	BSF	PORTC, 3	injection
	CALL	T_1min	Temporisation de 1 min
	BCF	PORTC, 2	Arrêt de l'injection
	BCF	PORTC, 3	Affet de l'injection
	DECFSZ	N, f	Décrémenter N et tester si $N = 0$
	GOTO	b3	Si non, se brancher à "b3"
	goto	<u> </u>	Si oui, fin de cycle
b3	call	T_5min	

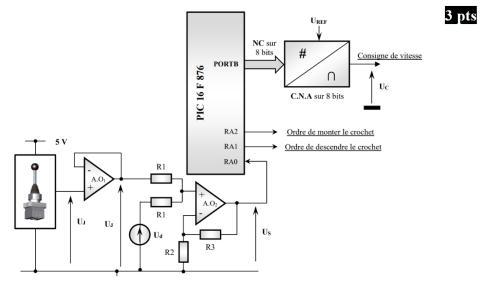
3 pts

#### Exercice 6 : examen national 2024, session normale

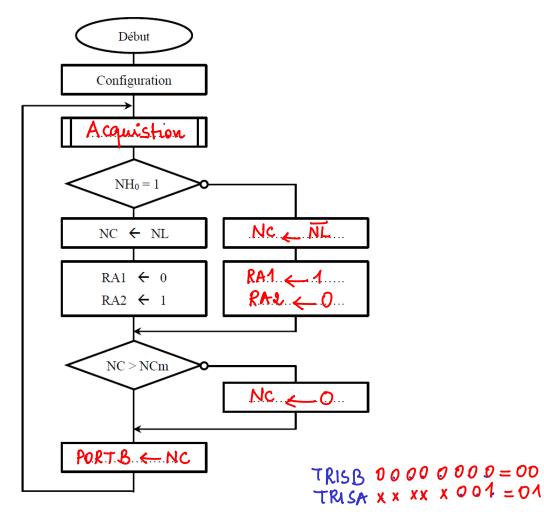
#### <u>Tâche 6</u>: Calcul de la vitesse de consigne et détermination du sens de déplacement

Pour calculer la vitesse de consigne et déterminer le sens de déplacement du crochet (montée ou descente), le PIC agit selon l'algorithme suivant :

- Acquérir la position α du manche de la manette de commande par un sous-programme appelé
   'Acquisition' qui convertit le signal Us image de α en un nombre N sur 9 bits, stocké dans les cases mémoires appelées NH (NH0 bit de poids fort de N) et NL (8 bits de poids faible de N);
- Déterminer à partir de N_{H0} (bit 0 de N_H) et de N_L :
  - Le code de la vitesse consigne  $N_C$  (sur 8 bits) :  $N_C = N_L$  si  $\alpha > 0$  et  $N_C = \overline{N}_L$  si  $\alpha < 0$ ;
  - Le sens de déplacement du crochet (montée ou descente) en positionnant les bits RA1 et RA2.
- Mettre  $N_C$  à 0 si  $N_C < N_{Cm}$  ( $N_{Cm}$ : code de la vitesse de déplacement minimal du crochet);
- Transférer le code N_C au convertisseur numérique analogique via le **PORTB**, pour restituer le signal U_C de commande du variateur de vitesse du moteur M1.


#### Exemple:

	$N_{ m H}$	$N_{ m L}$	
$\alpha_{\max} = +25^{\circ}$ $(\alpha > 0)$	0000 000 <b>1</b>	1111 1111	Vitesse maximale de montée : $N_C = N_L = 255$ Bit 0 de $N_H = 1$ : ordre de monter le crochet.
$a_{\min} = -25^{\circ}$ $(\alpha < 0)$	0000 000 <b>0</b>	0000 0000	Vitesse maximale de descente : $N_C = \overline{N}_L = 255$ <b>Bit 0 de NH = 0</b> : ordre de descendre le crochet.


En vous aidant de l'algorithme ci-dessus et du jeu d'instructions fourni en **DRES 04**, compléter :

#### Q.48- L'organigramme correspondant.

Q.49- Le programme de configuration du microcontrôleur PIC 16F876. (Mettre les bits non utilisés du registre TRISA à 0).



Q.48- [3 pts]

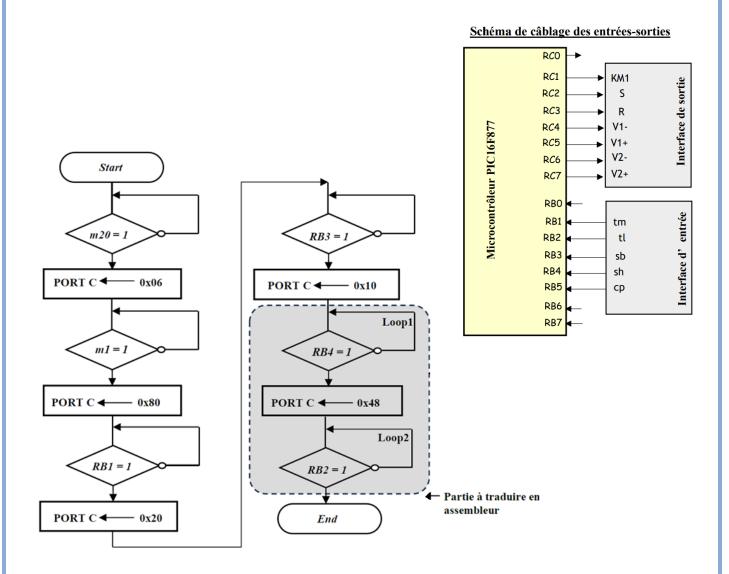


Q.49- [3 pts]

```
...ST.AT.US.,.RP1
     STATUS, RPO
                               ; Accès à la BANK 1
                               ; RA0 entrée, RA1 et RA2 des sorties
                               ; PORTB en sortie
MOVLW
            0x8E
MOVWF
            ADCON1
                               ; Configuration du CAN interne
BCF
            STATUS, 6
    STATUS, RPO
                               ; Accès à la BANK 0
MOVLW
            0x81
MOVWF
            ADCON0
                               ; Configuration du CAN interne
```

#### Exercice 7 : examen national 2024, session de rattrapage

#### <u>Tâche 5 : Programme assembleur</u>


À partir :

- Du schéma de câblage des entrées-sorties du DRES 03 ;
- De l'extrait de la documentation technique du microcontrôleur donné en DRES 04,

#### **Q47.** Compléter les parties du programme assembleur permettant de :

6,5 pts

- 1. Configurer les ports B et C du microcontrôleur;
- 2. Réaliser la partie encadrée de l'organigramme de l'expansion de la macro-étape M20 donné ci-dessous.



## Q47. Programme Assembleur

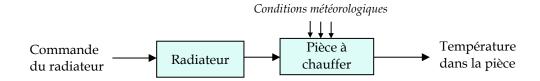
# TRISB = 111111111 = FF TRISC = 00000000 = 00

Ligne	Label	Mnémonique	Opérande						
	Configuration des ports B et C								
1		BSF	STATUS, RPO -> Page 1						
2	(	movilw	0x FF						
3		movwe	TRISB						
4		.clrf	TRISC						
5									
6		BCF	STATUS, RPO -> Page 0						
	Pro	ogramme de la partie encadre							
7	Loop1	BTFSS	PORTB, RB4						
8		goto	leop1						
9	1	movlu	.Ox48						
10		movwf	PORTC						
11	Loop2	btfss	PORTB., 2						
12		goto	les p.2						

# SYSTEMES ASSERVIS

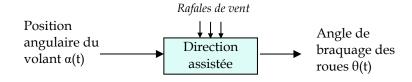
#### Généralités

#### Commande en boucle ouverte


ATC/2e STE

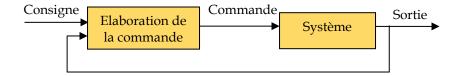
Un système est en boucle ouverte lorsque la commande est élaborée indépendamment de la sortie. Lorsqu'une perturbation intervient sur le système, la sortie s'écarte de la consigne (sortie souhaitée) : la précision de ce système est faible et il est moins fiable.




#### Exemple 1 : commande de la température d'une salle

Suite à un changement de la température ambiante, la température atteinte dans la salle sera différente de la consigne.




#### Exemple 2 : direction assistée d'un véhicule automobile

Lors de rafales de vent, l'angle de braquage souhaité ne sera pas obtenu.



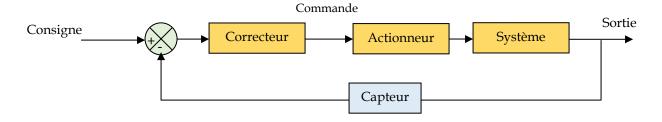
#### Commande en boucle fermée

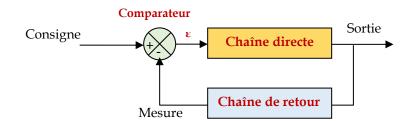
En boucle fermée, la sortie est comparée en permanence à la consigne puis corrigée.



#### 3. Système bouclé

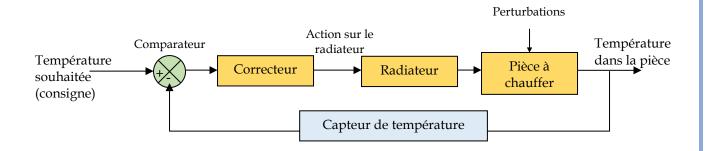
Un système bouclé a donc un dispositif de retour permettant de compenser le manque de fidélité d'un système physique. Un système bouclé peut fonctionner en régulation ou en asservissement :


• On parle de <u>régulation</u> lorsque la **consigne est constante** et que le système doit maintenir une sortie constante quelques soient les perturbations.

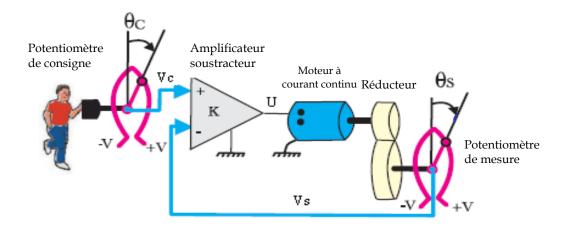

Exemples: régulation de vitesse d'un véhicule, de température d'un local.

• On parle d'<u>asservissement</u> lorsque la **consigne varie** avec le temps. Le système doit ajuster en permanence la sortie au signal d'entrée.

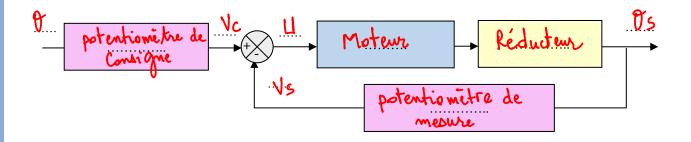
Exemples: asservissement de position d'un radar de poursuite, suivi de trajectoire d'un missile.


Le schéma bloc d'un système asservi est le suivant :






- Le **comparateur** calcule l'écart entre la consigne et la sortie ;
- A partir de l'écart ε constaté, le <u>correcteur</u> élabore un signal de commande ;
- L'<u>écart</u>  $\varepsilon$  (ou erreur) caractérise la qualité de l'asservissement. Le but de l'asservissement est d'annuler en permanence cet écart, de manière à ce que la sortie suive l'entrée.

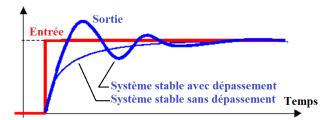

#### Exemple: régulation de température d'une pièce

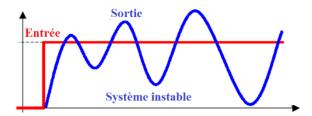


#### Exercice : représentation d'une régulation de position par un schéma bloc



Compléter la représentation en blocs de cette régulation.

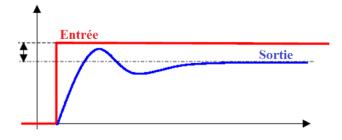




#### Performances d'un système asservi

ATC/2e STE

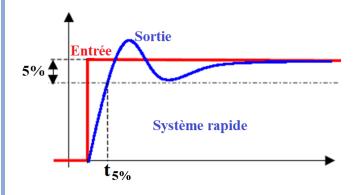
Le cahier des charges d'un système asservi impose généralement un certain nombre de contraintes sur le comportement du système (pour le passage d'une position à une autre sur un radar par exemple). Ces contraintes portent sur : la stabilité, la précision et la rapidité.

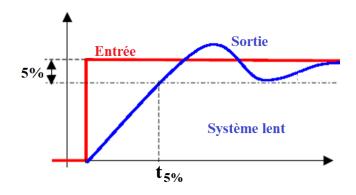
#### **Stabilité**





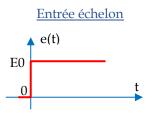

Un système est stable si pour une entrée constante e(t), la sortie du système s(t) tend vers une constante. Un système asservi instable se traduit par des variations importantes de la sortie qui peuvent causer la dégradation.


#### **Précision**


C'est la différence entre la sortie et l'entrée en régime permanent.



#### **⇒** Rapidité


La rapidité se traduit par le temps mis par le système pour que la sortie atteigne la valeur finale. On définit, pour caractériser la rapidité, le temps de réponse à 5%.





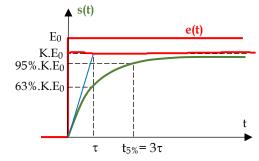
### Systèmes linéaires

- La mise en équations d'un système s(t) = f(e) aboutit souvent à une équation différentielle du premier ordre ou du deuxième ordre;
- Analyser les performances d'un système c'est étudier son comportement vis-à-vis des signaux d'entrée particuliers. Une entrée typique est l'échelon, la réponse de s(t) à un échelon s'appelle une réponse indicielle.



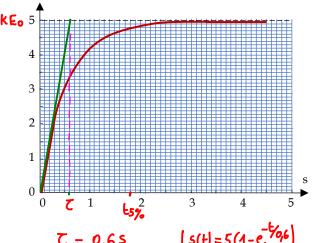
#### Système du premier ordre

Un système physique d'entrée e(t) et de sortie s(t) est du premier ordre s'il est régi par une équation différentielle du premier ordre du type:


$$\tau \cdot \frac{ds(t)}{dt} + s(t) = K \cdot e(t)$$

k : gain statique du système  $\tau$ : constante de temps.

*Réponse indicielle* : l'entrée est un échelon d'amplitude  $E_0$  pour t > 0


L'équation devient : 
$$\tau \cdot \frac{ds(t)}{dt} + s(t) = K \cdot E_0$$

Ce qui donne :  $s(t) = K.E_0 . (1 - e^{-\frac{t}{\tau}})$ 



- Le comportement du système est non oscillant (stable), il tend vers la valeur K.E₀ sans jamais la dépasser. La propriété de non dépassement est très recherchée dans certains asservissements où le dépassement est interdit;
- Le temps de réponse à 5% est tel que s(t) = 0.95. K.E₀ =>  $s(t) = K.E_0$ .  $\left(1 e^{-\frac{t}{\tau}}\right) = 0.95$ . K.E₀ => t (5%) =  $3\tau$ ;
- L'erreur statique est  $\varepsilon = 1-k$ ; En effet,  $\varepsilon = (e(t) - s(t))/e(t)$  en régime statique ; soit  $\varepsilon = (E_0 - kE_0)/E_0 = 1-k$  en % ;
- La **tangente à l'origine** coupe l'asymptote horizontale  $y = K.E_0$  à  $t = \tau$ .  $\hat{A} t = \tau, s(t) = 0.63. \text{ K.E}_0.$

Déterminer le temps de réponse à 5% et la constante de temps de ces systèmes du premier ordre.



$$T = 0.65$$
 |  $s(t) = 5(1 - e^{-t/96})$ 



$$C = 0.65$$
 |  $S(t) = 5(1 - e^{-t_{0.0}})$   $C = 1.65$  et  $t = 37 = 4.85$ 

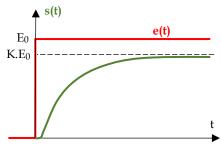
#### 2. Système du deuxième ordre

Un système physique d'entrée e(t) et de sortie s(t) est du deuxième ordre s'il est régi par une équation différentielle du deuxième ordre du type :

$$\frac{1}{\omega_n^2} \cdot \frac{d^2 s(t)}{dt^2} + \frac{2z}{\omega_n} \cdot \frac{ds(t)}{dt} + s(t) = K \cdot e(t)$$

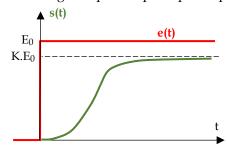
 $\mathbf{K}$ : gain statique

 $\omega_n$ : pulsation propre


z: facteur d'amortissement

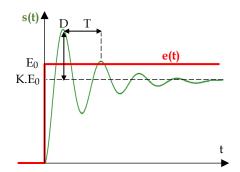
Réponse indicielle : l'entrée est un échelon d'amplitude E pour t > 0

Il existe 3 cas selon le facteur d'amortissement :


#### <u>1er</u> cas : z > 1, régime apériodique amorti

Le comportement du système est non oscillant, il tend vers la valeur K.E0 sans jamais la dépasser.




#### 2e cas: z = 1, régime apériodique critique

La réponse est non oscillante, c'est le régime apériodique le plus rapide.



#### $3^{e}$ cas : z < 1, régime oscillatoire

La réponse présente la forme d'une sinusoïde amortie.



 $\mathbf{D}: \text{d\'epassement}$ 

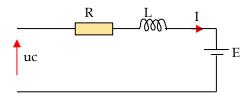
T: pseudo-période


#### Asservissement en vitesse d'un moteur à CC

Le système est décrit par le schéma bloc ci-contre :

Supposons qu'une perturbation provoque une diminution de la vitesse de sortie  $\Omega s$  (la consigne  $v_c$  étant constante).

La chaîne de retour fait alors apparaître une diminution de la grandeur de retour  $\mathbf{v}_{\Omega}$ .


La grandeur d'entrée  $\mathbf{v_e}$  va donc augmenter et la vitesse  $\mathbf{\Omega s}$  également. Elle va augmenter jusqu'à ce que la tension  $\mathbf{\varepsilon} = \mathbf{v_e} = \mathbf{v_c} - \mathbf{v_\Omega}$  s'annule.



Remarquons que ce résultat est obtenu sans qu'il soit nécessaire de connaître l'origine de la perturbation.

#### ⇒ Mise en équation du moteur et sa charge

La mise en équation du système "moteur+charge" est réalisable à partir du modèle électrique de la machine à courant continu et de la relation fondamentale de la dynamique.



R, L : résistance et inductance de l'induit E : force contre électromotrice

On a  $Uc = E + RI + L\frac{dI}{dt}$  avec  $E = k'\Phi\Omega = k\Omega$  (à flux constant) =>  $Uc = RI + L\frac{dI}{dt} + k\Omega$  (1)

Le principe fondamental de la dynamique s'écrit :  $J\Omega' = Cu - Cr = Cem - Cf - Cr = Cem - Cr$  (si on néglige Cf, le couple des frottements secs)

Avec J: moment d'inertie des masses en mouvement

Cem, Cu et Cr : respectivement couple électromagnétique, couple utile et couple résistant

On aussi Cem = kI et on suppose Cr =  $f\Omega$  où f est le coefficient de frottement visqueux

Ce qui donne 
$$J\Omega' = kI - f\Omega \implies I = \frac{J}{k} \cdot \Omega' + \frac{f}{k} \cdot \Omega$$
 (2)

#### ⇒ Analyse temporelle

#### On néglige l'inductance L de l'induit

L'équation (1) devient 
$$Uc = RI + k\Omega$$
 or (2)  $I = \frac{J}{k} \cdot \Omega' + \frac{f}{k} \cdot \Omega$   $\Rightarrow Uc = \frac{RJ}{k} \cdot \Omega' + \frac{Rf + k^2}{k} \cdot \Omega$   $\Rightarrow \frac{RJ}{Rf + k^2} \cdot \Omega' + \Omega = \frac{k}{Rf + k^2} \cdot Uc$ 

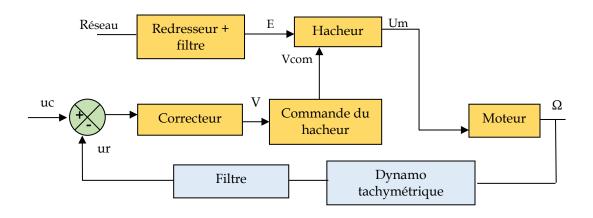
C'est une équation du 1^{er} ordre avec la constante de temps  $\tau = \frac{RJ}{Rf + k^2}$  et le gain statique  $K = \frac{k}{Rf + k^2}$ .

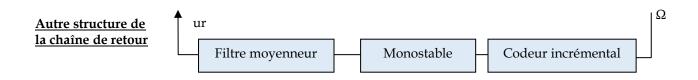
La réponse indicielle (à un échelon) Uc =  $E_0$  pour t > 0 est  $\Omega(t) = K$ .  $E_0$ .  $(1 - e^{-\frac{t}{\tau}})$  (voir plus haut).

Le système est stable et ne risque aucun dépassement. Le temps de réponse à 5% est 3τ.

#### On tient compte de l'inductance L de l'induit

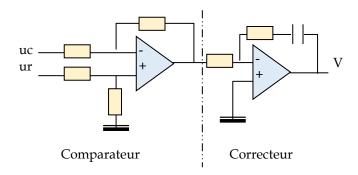
En tenant compte des équations (1) et (2), il vient  $Uc = R\left(\frac{J}{k} \cdot \Omega' + \frac{f}{k} \cdot \Omega\right) + L\left(\frac{J}{k} \cdot \Omega'' + \frac{f}{k} \cdot \Omega'\right) + k\Omega$ 


Ce qui donne 
$$\frac{LJ}{Rf + k^{2}} \cdot \Omega^{''} + \frac{RJ + Lf}{Rf + k^{2}} \cdot \Omega^{'} + \Omega = \frac{k}{Rf + k^{2}} \cdot Uc$$


C'est une équation du 2ème ordre.

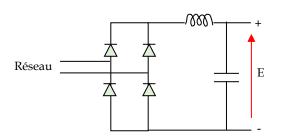
La pulsation propre, le facteur d'amortissement et le gain statique sont tels que (voir plus haut) :

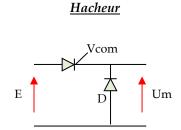
$$\frac{1}{\omega_n^2} = \frac{LJ}{Rf + k^2}$$
 ,  $\frac{2z}{\omega_n} = \frac{RJ + Lf}{Rf + k^2}$  et  $K = \frac{k}{Rf + k^2}$ 


#### ⇒ Montage d'asservissement





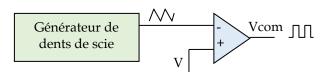

- La dynamo tachymétrique, capteur de vitesse, est en général très bruitée ; il va falloir filtrer sa sortie avec un passe-bas qui élimine une partie suffisante du bruit ;
- Pour qu'un asservissement soit correct, il faut d'abord qu'il assure la **stabilité** du système. Ceci étant, on recherche souvent à ce qu'en régime permanent, la sortie tende vers la consigne (**précision**). On peut aussi s'imposer un temps de réponse court (**rapidité**).
  - Pour atteindre ces objectifs, on introduit un correcteur dans la chaîne directe.

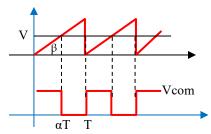

L'ensemble "comparateur (soustracteur) + correcteur" peut avoir la structure suivante :



#### Alimentation du hacheur

Cette alimentation est réalisée au moyen d'un pont redresseur et d'un filtre :



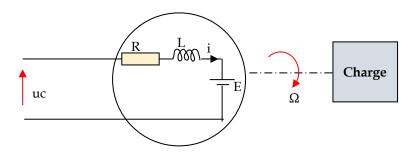




Le hacheur débite au moteur une tension  $Um = \alpha . E$  où  $\alpha$  est le rapport cyclique proportionnel à la tension de commande V.

D est une diode de roue libre.

Pour obtenir un rapport cyclique  $\alpha$  proportionnel à la tension V, on compare celle-ci à un signal en dents de scie. La sortie du comparateur est le signal Vcom envoyée au thyristor.






On a 
$$tg\beta = V/(\alpha.T) => \alpha = V/(tg\beta.T) = K.V$$
  
( $\beta$  et T étant des caractéristiques du générateur de dents de scie)

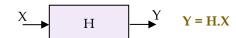
162 / 192

# Exercice : Modélisation du moteur à CC par un schéma bloc

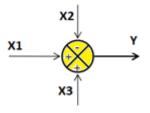
L'objectif est de représenter l'ensemble "moteur à courant continu + charge" par un schéma bloc en vue d'en étudier l'asservissement en vitesse. On négligera l'inductance L du bobinage de l'induit.



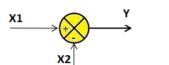
Relation	Schéma fonctionnel
i en fonction de uc et E  Uc = Ri + L di + E ≈ Ri + E ⇒ i = uc - E  R	u.c. t.
E en fonction de Ω  A flux Constant , $E = K \Omega$	ΩE
2 en fonction de Cem et de Cr 2 m loi de Newton ΣCouples = η ds ⇒ Cem Cr = η ds dt -2 = Cem Cr	Cem 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u>Cr en fonction de Ω</u> On admet que le couple résistant Cr est proportionnel à Ω. Soit, $Cr = f$ . $Ω$ où $f$ est le coefficient de frottement visqueux	$\Omega$ $\longrightarrow$ $Cr$
Cem en fonction de i  Cem = Pem - E.i = K.D.i = Ki  SL	i — Cem
Schéma bloc  Uc  VR  Cr.  Cr.  Cr.  Cr.  Cr.  Cr.  Cr.  Cr	


# Schéma bloc (ou diagramme fonctionnel)

Un schéma fonctionnel est une représentation simplifiée d'un processus mettant en évidence les différentes fonctions mises en œuvre.


#### 1. Formalisme

#### **⇒** Bloc


Un bloc est caractérisé par sa fonction de transfert ou transmittance H

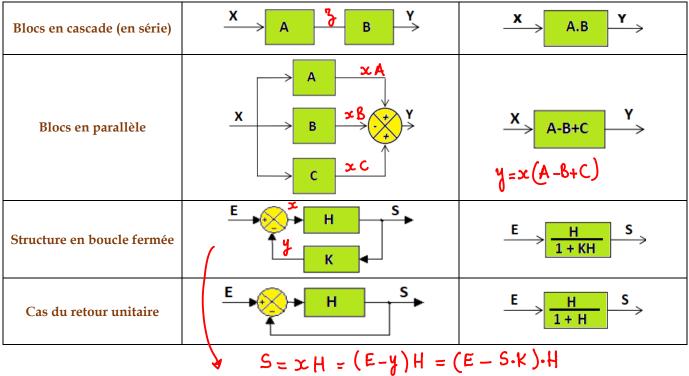


**Sommateur** 



$$Y = X1 - X2 + X3$$

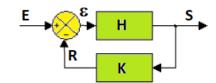



$$Y = X1 - X2$$

⇒ Point de prélèvement

Comparateur

$$\frac{x}{x}$$

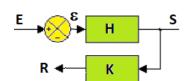

#### Simplification des schémas blocs



donc 
$$S = (E - S \cdot K)H \Rightarrow S(1 + KH) = EH \Rightarrow S = E \cdot \frac{H}{1 + KH}$$

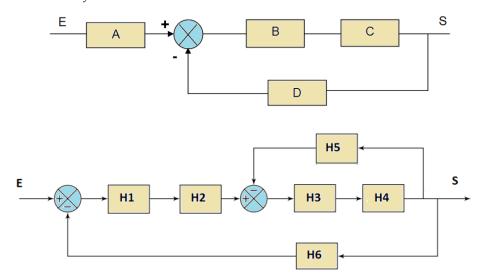
#### 3. Fonction de transfert

Considérons le schéma d'asservissement suivant :

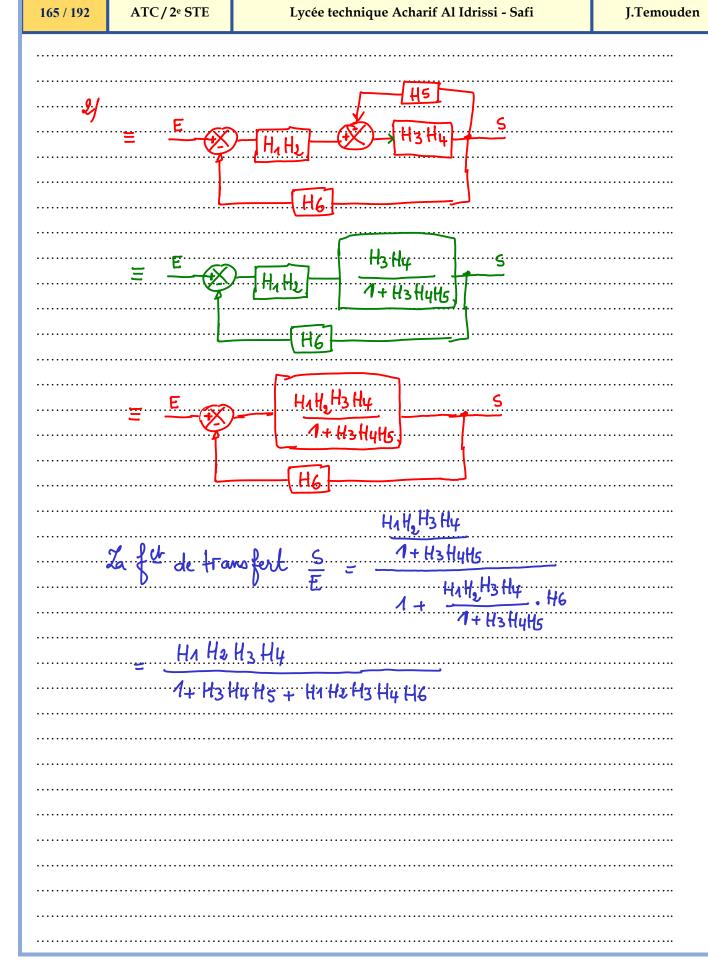



La fonction de transfert en boucle fermée est la transmittance entre la consigne E et la sortie S ;

soit FTBF = 
$$\frac{S}{E} = \frac{H}{1 + KH}$$

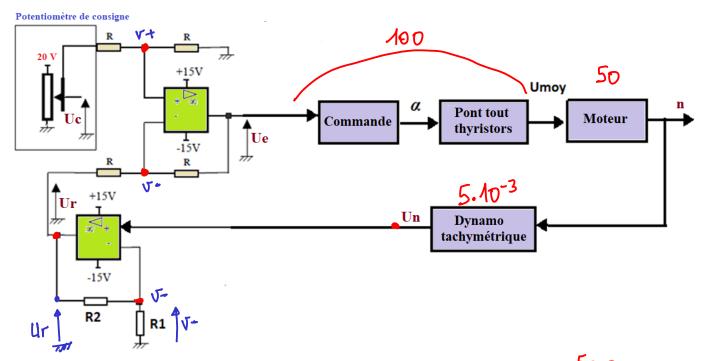

La fonction de transfert en boucle ouverte est la transmittance entre le signal d'erreur  $\epsilon$  et le signal de retour R lorsque le retour est coupé ;

soit FTBO = 
$$\frac{R}{\varepsilon}$$
 = K.H




#### Exercice 1: fonction de transfert

Déterminer la fonction de transfert des schémas blocs suivants :








#### Exercice 2 : régulation de vitesse de rotation d'un moteur à CC

L'exercice propose d'étudier la régulation de vitesse d'un moteur à courant continu, afin d'éviter des variations importantes de vitesse lors d'une perturbation. Le descriptif du système de régulation est le suivant :



La régulation par le système bouclé peut être schématisée comme suit :

La chaîne de retour est constituée par l'ensemble "dynamo tachymétrique-amplificateur"

La dynamo tachymétrique délivre une tension Un proportionnelle à la vitesse de rotation du moteur :  $Un = 5.10^{-3}.n$  (n en tr/min et Un en V).



#### Comparateur

Les amplificateurs opérationnels sont supposés parfaits et fonctionnent en régime linéaire, montrer que Ue = Uc - Ur.

#### Chaîne de retour

- Montrer que  $Ur = \left(1 + \frac{R^2}{R^1}\right)$ . UnOn donne  $R1 = 10 \ k\Omega$ , calculer R2 pour que la transmittance de la chaîne de retour soit  $K = 0.01 \ V/(tr/min)$ .

#### Régulation de vitesse

Ue est une tension de commande qui sert à régler l'angle de retard à l'amorçage des thyristors et donc à régler la tension moyenne Umoy à la sortie du pont. La relation liant la tension Ue à la tension moyenne est Umoy = 100.Ue. On négligera la chute de tension dans l'induit du moteur ; la vitesse de rotation est alors pratiquement proportionnelle à Umoy; soit n = 50.Umoy (Umoy en V et n en tr/min).

- *Calculer la transmittance H de la chaîne directe.*
- La tension de consigne Uc étant maintenue constante, calculer **Ue** et **Ur** pour une vitesse de **n = 1 000 tr/min**. En déduire la tension de consigne **Uc** permettant le réglage de cette vitesse.
- Une perturbation tend à diminuer la vitesse du moteur. Donner le sens de variation des grandeurs Ur, Ue et n puis conclure sur l'intérêt du bouclage réalisé.

Comparateur

Par le th. de Milman

$$V+=\frac{16+1}{12+1}=\frac{110}{2}$$

$$V+=\frac{1}{12}+\frac{1}{12}=\frac{1}{2}$$

or 
$$V+=V- \Rightarrow \frac{Uc}{2} = \frac{Ur+Ue}{2}$$

Chaine de retour

$$\Rightarrow kn = (\Lambda + \frac{R^2}{R^2}).5 \times 10^3.n$$

$$\Rightarrow R2 = R1(\frac{K}{5 \times 10^{-3}} - 1)$$

$$R_{2} = 10 \times 10^{3} \left( \frac{0.01}{5 \times 10^{3}} - 1 \right) = 10 \text{ K.}\Omega$$

Régulation

$$\Rightarrow H = \frac{n}{\text{Ue}} = \frac{50 \times \text{Umoy}}{\text{Umoy} / 100}$$

$$\rightarrow n = H \cdot Lle \Rightarrow Lle = \frac{n}{H}$$

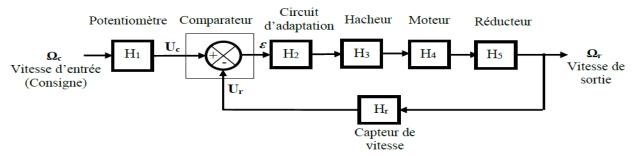
Exercice 3: examen national 2018, session de rattrapage

#### SEV 3 : Asservissement de vitesse et traitement de l'information

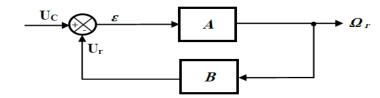
Le réglage de la vitesse du moteur se fait en agissant sur le rapport cyclique de la tension du moteur  $u_m(t)$ . En plus, la vitesse dépend de plusieurs paramètres tels que :

- ✓ La charge du chariot;
- ✓ La pente et l'état du terrain.

On se propose d'asservir la vitesse du chariot à la vitesse choisie par l'utilisateur (consigne).


Le principe de cet asservissement consiste donc à :

- Mesurer la vitesse du chariot et délivrer une tension  $U_r$  image de la vitesse ;
- Comparer cette tension à la tension  $U_C$  image de la vitesse désirée ;
- Agir sur le moteur en fonction de l'écart entre  $U_C$  et  $U_{\tau}$ .


La comparaison des tensions et la commande du hacheur s'effectuent par le microcontrôleur.

#### Tâche 1 : Modélisation du système

Le modèle équivalent est représenté par le schéma bloc suivant :



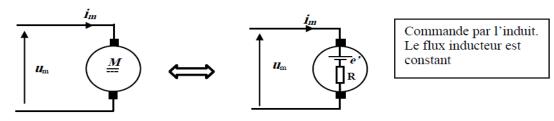
Ce schéma-bloc peut être simplifié et remplacé par le schéma équivalent suivant :



On note:

Avec:  $U_C = H_1$ ,  $\Omega_c$ 

- A: la fonction de transfert de la chaine directe;
- B: la fonction de transfert de la chaine de retour.


#### Q26) Exprimer A et B en fonction de H2, H3, H4, H5 et Hr.

1,5 pt

Q27) Donner en fonction de A et de B:

#### Tâche 2 : Modélisation du moteur

Le schéma équivalent du moteur à courant continu est le suivant :



• **u**_m: tension aux bornes de l'induit du moteur (V).

Lycée technique Acharif Al Idrissi - Safi

• R: résistance de l'induit du moteur ( $\Omega$ ).

 $\mathbf{u}_{m} = Ri_{m} + e'$ • e' = a.  $\Omega_m$ 

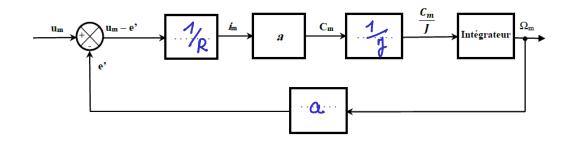
169 / 192

- avec:  $C_m = a.i_m$
- a : constante de la f.c.é.m (V.s/rad) ou constante de couple (N.m/A).
- $\Omega_m$ : vitesse angulaire du moteur (rad/s).
- $C_m$ : couple moteur (N.m).

• e': f.c.é.m du moteur (V).

En appliquant la loi fondamentale de la dynamique au moteur, on obtient :  $C_m - C_f = J \frac{d\Omega_m}{dt}$ 

avec J: le moment d'inertie de l'ensemble mobile en rotation. On suppose que:


- ✓ Le moteur est à vide : couple résistant  $C_r = 0$ ;
- ✓ Les frottements mécaniques C_f sont négligeables.
- (Q28) Montrer que la vitesse du moteur  $\Omega_m$  est liée à la tension  $u_m$  par l'équation différentielle suivante :

$$\left(\frac{RJ}{a^2}\right)\frac{d\Omega_m}{dt} + \Omega_m = \frac{u_m}{a}$$
 2 pts

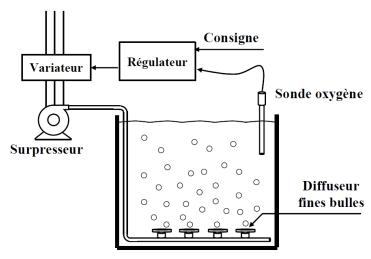
- **Q29)** S'agit-il d'un système de premier ou de deuxième ordre?
- Q30) Sur le document DREP 06, compléter alors le schéma-bloc du moteur.

0,5 pt

- 26) A = H2. H3. H4. H5
- $27/ T_{80} = A \cdot B \qquad \int T_{8F} = \frac{A}{1 + A \cdot B}$
- 28/ On a Cm_Cr_Cf= y dram -> Cm= y dram (car Cr=0 et Cf=0)
- $\Rightarrow a.im = \int \frac{d\Omega_m}{dt} \Rightarrow a\left(\frac{u_m e'}{R}\right) = \int \frac{d\Omega_m}{dt}$
- $\Rightarrow a(\frac{\lim -a \cdot \Omega_m}{o}) \eta \cdot \frac{d\Omega_m}{dt} \Rightarrow \frac{\alpha}{R} \cdot \lim_{R \to \infty} \frac{\alpha^2 \cdot \Omega_m}{dt} = \eta \cdot \frac{d\Omega_m}{dt}$ 
  - $\Rightarrow \frac{R}{a^2} \left( \frac{\alpha}{R} \cdot \text{Um} \frac{a^2}{R} \cdot \Omega_{\text{In}} \right) = \frac{R}{a^2} \int \frac{d\Omega_{\text{In}}}{dt}$
  - $\Rightarrow \frac{\coprod m}{\alpha} \Omega_m = \frac{Rr_2}{a^2} \cdot d \cdot \frac{\Omega_m}{dt} \Rightarrow \left(\frac{Rr_2}{a^2}\right) d \cdot \Omega_m + \Omega_m = \frac{\coprod m}{\alpha}$
  - 29/ 1et ordre Car equation différentielle du 1et ordre

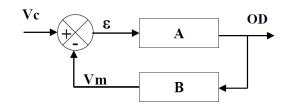


#### Exercice 4: examen national 2023, session de rattrapage

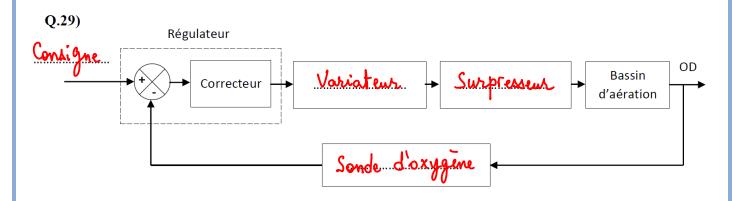

Pour réaliser un traitement biologique efficace, il est nécessaire de réguler le taux d'oxygène dissous dans le bassin d'aération et donc de contrôler la vitesse du surpresseur selon le besoin en oxygène.

#### Tâche 1: régulation du taux d'oxygène dissous (OD) dans le bassin d'aération

La figure ci-contre fournit le schéma de la boucle de régulation du taux d'oxygène dissous (**OD**).


#### ⇒ Boucle de régulation

Le régulateur compare la valeur mesurée par la sonde oxygène à la consigne et élabore le signal de commande envoyé au variateur de vitesse. La modification de vitesse du surpresseur se traduit par celle du débit d'air soufflé dans le bassin et donc du taux d'oxygène **OD** 




Boucle de régulation de l'oxygène dissous

Le schéma fonctionnel de cette boucle de régulation peut être modélisé comme le montre la figure ci-contre.

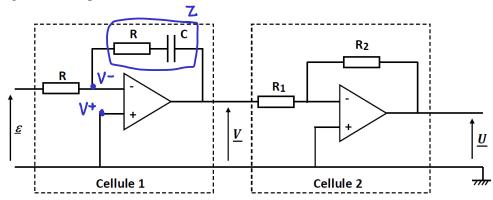


- Q.29) À partir du schéma de la boucle de régulation ci-dessus, compléter le schéma-bloc fonctionnel de cette régulation (utiliser les propositions : surpresseur, sonde oxygène, variateur, consigne)
   2 pts
- **Q.30)** Parmi les propositions données, lesquelles sont correctes ?



#### Q.30) Cocher les cases appropriées

Proposition	Vrai	Faux
Un système régulé est un système bouclé pour lequel la sortie poursuit une consigne variable.		X
Un système régulé est un système bouclé qui maintient la sortie conforme à une consigne fixe.	X	
Le bloc A correspond à la chaine directe du système bouclé.	ZĮ.	
Le bloc <b>B</b> correspond à la chaine de retour du système bouclé.	X	
La fonction de transfert en boucle fermée est : $\frac{A}{1+A.B}$	X	
La fonction de transfert en boucle ouverte est : A + B		


#### ⇒ Synthèse d'un correcteur PI

Dans une boucle de régulation, le correcteur élabore le signal de commande à partir du signal d'erreur. Son but est d'améliorer les performances de la régulation.

Q.34) Quelles sont ces performances visées par le correcteur (cocher les bonnes réponses)

1,5 pt

Le montage suivant représente un correcteur PI dit à architecture mixte :



- Q.35) Montrer que la fonction de transfert complexe de la cellule 1 est  $\frac{V}{\varepsilon} = -(1 + \frac{1}{jRC\omega})$ ;
- **Q.36)** Donner, en fonction de  $R_1$  et  $R_2$ , la fonction de transfert complexe  $\frac{\underline{\underline{U}}}{\underline{\underline{V}}}$  de la cellule 2;
- Q.37) En déduire que la fonction de transfert complexe  $\underline{\underline{H}} = \frac{\underline{U}}{\varepsilon}$  du correcteur s'écrit  $\underline{\underline{H}} = \frac{R_2}{R_1} (1 + \frac{1}{jRC\omega})$ ; 2 pts

La forme canonique de la fonction de transfert de ce correcteur est :  $\underline{H} = K_p \left(1 + \frac{1}{T_t \mathbf{j} \omega}\right)$ .

 $\mathbf{K}_{\mathbf{p}}$  et  $\mathbf{T}_{\mathbf{i}}$  s'appellent respectivement gain proportionnel et constante de temps d'action intégrale.

On se propose de déterminer ces deux paramètres par une méthode expérimentale.

Cette méthode de réglage des correcteurs repose sur le principe de la recherche des oscillations en faisant varier le gain proportionnel. On note, au point d'oscillations, le gain  $K_{osc}$  et la période des oscillations  $T_{osc}$ 

Les paramètres **Kp** et **Ti** du correcteur sont alors donnés par le tableau ci-dessous.

Type du correcteur	Gain Kp	Ti
PI	0,45.Kosc	0,83.Tosc

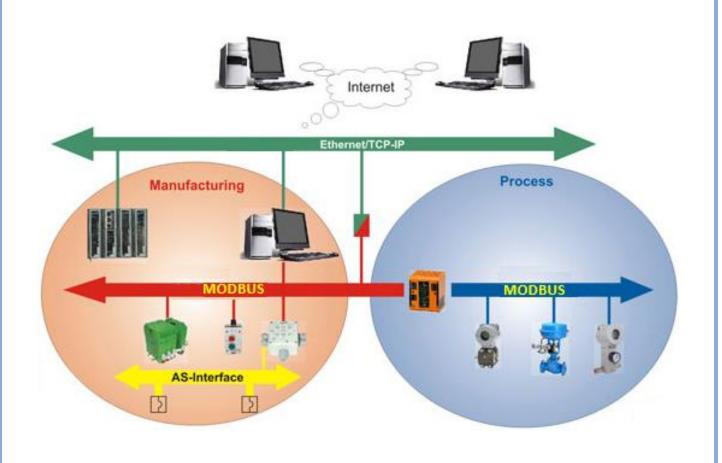
L'application de cette méthode sur le système de régulation de l'oxygène dissous a donné, à la limite des oscillations :  $K_{osc} = 4$  et  $T_{osc} = 0.9$  s.

- Q.38) En utilisant le tableau ci-dessus, calculer les valeurs des paramètres  $K_p$  et  $T_i$
- 1,5 pt

**Q.39)** En déduire les valeurs de  $R_2$  et C si  $R = 18 k\Omega$  et  $R_1 = 22 k\Omega$ 

2 pts

Q.34) Cocher les cases appropriées


	Vrai	Faux		Vrai	Faux		Vrai	Faux
Linéarité		X	Résolution		X	Précision	X	
Rapidité	X		Stabilité	X		Étendue de mesure		X

35/  $\underline{N} + = 0$   $\frac{1}{2} + \frac{1}{2}$   $\underline{V} - = \frac{1}{2} + \frac{1}{2}$   $\frac{1}{2} + \frac{1}{$ 

**PARTIE** 

3

# La fonction COMMUNIQUER



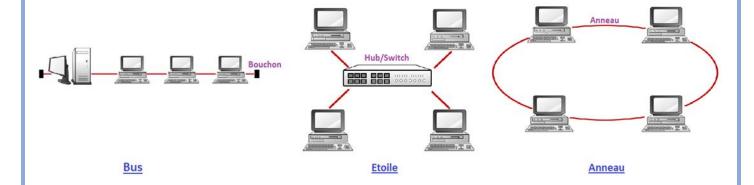
ATC/2e STE

9

# COMMUNICATION DE L'INFORMATION RESEAUX INDUSTRIELS -

#### Généralités sur les réseaux informatiques

Un réseau est un ensemble de machines interconnectées dans le but d'échanger des informations et de partager des ressources (fichiers, imprimante...).


En fonction de la localisation, la distance et le débit, les réseaux sont classés en trois types :

- LAN (Local Area Network): réseau local, intra entreprise permettant l'échange de données et le partage de ressources (ex : Ethernet);
- MAN (Metropolitan Area Network): réseau métropolitain qui permet la connexion de plusieurs sites à l'échelle d'une ville;
- WAN (Wide Area Network): réseau à l'échelle d'un pays ou d'un continent, généralement celui des opérateurs. Le plus connu des WAN est Internet.

#### ⇒ Topologie

Par topologie, nous entendons la façon dont on connecte les machines au serveur. Il y en a trois principales :

- Topologie en bus : tous les ordinateurs sont reliés à une même ligne par le biais d'un câble ;
- Topologie en étoiles : la communication entre deux ordinateurs passe par le matériel central (routeur, commutateur, concentrateur, ...);
- Topologie en anneau (ring): les équipements sont reliés entre eux en formant une boucle.

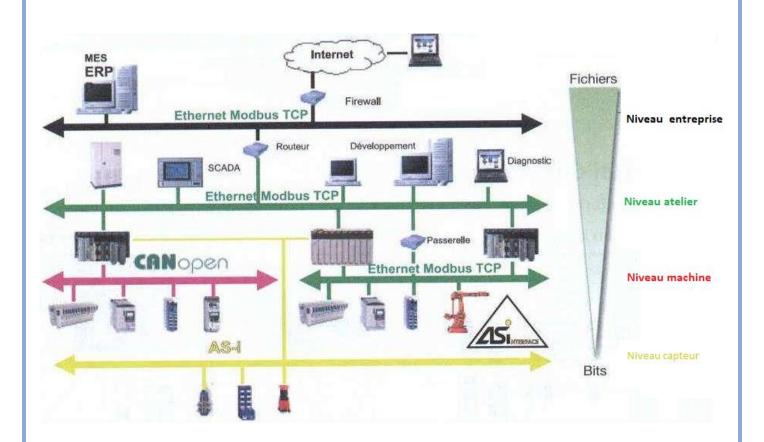


#### ⇒ Méthodes d'accès

Une méthode d'accès est un ensemble de règles définissant la façon dont un ordinateur accède au support tout en évitant les collisions.

#### On distingue les méthodes :

- CSMA/CD (Carrier Sense Multiple Access with Collision Detect) pour les réseaux en bus et en étoile. Méthode utilisée par Ethernet;
- Token Ring (anneau à jeton) pour les réseaux en anneau.


#### ⇒ Pyramide CIM (Computer Integrated Manufacturing)

ATC/2e STE

La technologie CIM définit le modèle d'usine industrielle au sens de l'automatisation et de la communication, c'est-à-dire que tous les équipements de l'usine fonctionnent sous le contrôle permanent des ordinateurs, API et autres dispositifs numériques.

La CIM propose quatre niveaux. Plus on s'élève dans la pyramide, plus le niveau de décision est important. Un niveau supérieur décide ce qu'un niveau inférieur exécute.

		Fonction	Réseau
Niveau 3	Entreprise	Informatique de gestion de l'entreprise (PC, serveur)	Réseau informatique (Ethernet , TCP)
Niveau 2	Atelier	Gestion locale Contrôle de production (PC industriel, serveur)	Réseau local industriel (Ethernet, TCP Modbus)
Niveau 1	Machine	Traitement d'automatisation (API, μC, régulateur)	Réseau de terrain (Modbus)
Niveau 0	Capteur Actionneur	capteurs/ actionneurs	Réseau de capteurs/ actionneurs (ASI)



#### Réseau Ethernet

La technologie Ethernet permet de connecter les différents équipements entre eux dans un LAN (Local Area Network). Plusieurs réseaux peuvent communiquer entre eux par des routeurs pour former un WAN (Wide Area Network). La topologie la plus courante pour un réseau local est une topologie en étoile. Ethernet utilise le mécanisme CSMA/CD.

#### ⇒ Équipements

- Carte réseau dans le PC;
- Prises murales de type RJ45;

ATC/2e STE

- Câble en cuivre à paires torsadées ou en fibres optiques ;
- Concentrateurs (hub), commutateurs (switchs), routeurs;

Selon l'importance et le type de réseau, on utilise le plus souvent un des trois concentrateurs les plus généraux : les Hubs, Switchs et Routeurs.

Hub (concentrateur) : utilisé pour un réseau local avec un nombre très limité de machines. Il n'est ni plus ni moins qu'une multiprise RJ45 qui amplifie le signal réseau.

Switch (ou commutateur) : distribue les données à chaque machine destinataire, alors que le hub envoie les données à toutes machines qui répondent. Il élimine les collisions de paquets éventuelles.

Routeur: autorise l'utilisation de plusieurs classes d'adresses IP au sein d'un même réseau. Il permet ainsi la création de sous-réseaux.

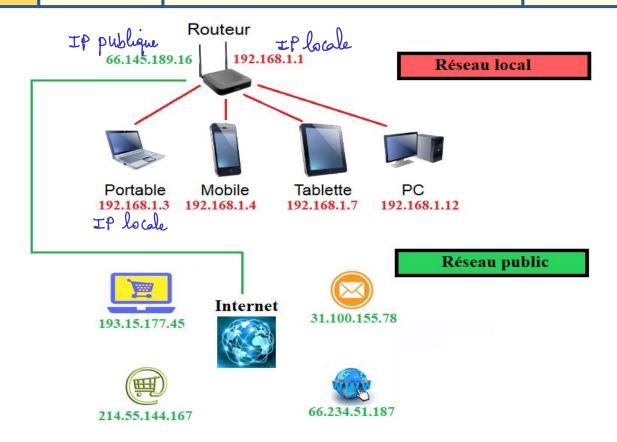
#### ⇒ Protocoles de communication

Un protocole est un ensemble de règles et de procédures à respecter pour émettre et recevoir des données sur un réseau. Le plus souvent, c'est la suite de protocoles TCP/IP qui est utilisée.

Voici quelques exemples de protocoles utilisant TCP/IP:

- HTTP (HyperText Transfer Protocol): protocole de navigation sur le web;
- FTP (File Transfer Protocol): protocole pour le transfert de fichiers.

TCP/IP (Transmission Control Protocole / Internet Protocole):


- Le protocole IP se base sur l'adressage IP, c'est-à-dire le fait de fournir une adresse IP à chaque machine du réseau afin de pouvoir acheminer des paquets de données ;
- Le protocole **TCP** assure le contrôle de la transmission des données.

#### ⇒ Adressage IP

Une adresse IP est le numéro qui identifie chaque ordinateur connecté à Internet, ou plus généralement, l'interface avec le réseau de tout matériel informatique (PC, routeur, imprimante) connecté à un réseau informatique utilisant l'Internet Protocol.

En attendant la généralisation de la nouvelle version d'IPv6 avec un adressage sur 128 bits, IPv4 utilise 32 bits représentés par 4 valeurs décimales chacune allant de 0 à 255.

L'adresse est constituée de deux parties : un identificateur de réseau (netId) et un identificateur de la machine (hostId) pour ce réseau.



Il existe trois classes d'adresses, chacune permettant de coder un nombre différent de réseaux et de machines :

- *Classe A* : 1 octet identificateur du réseau, 3 octets d'hôtes.
  - 1^{er} Octet compris entre 1 et 127.
- *Classe B*: 2 octets réseau, 2 octets d'hôtes.
  - 1^{er} Octet compris entre 128 et 191.
- *Classe C*: 3 octets réseau, 1 octet d'hôtes.
  - 1^{er} Octet compris entre 192 et 223.

Classe	Α	:	De	0.0.0.0	à	127.	.255.	.255.25	55
--------	---	---	----	---------	---	------	-------	---------	----

/	/			
OXXX XXXX	XXXX XXXX	XXXX XXXX	XXXX XXXX	
octet 1	octet 2	octet 3	octet 4	
partie réseau		partie hôte		
Classe B	: De 128.0.0.0	à 191.255.	255.255	
10XX XXXX	XXXX XXXX	XXXX XXXX	XXXX XXXX	
octet 1	octet 2	octet 3	octet 4	
partie réseau		partie hôte		
Classe C :	De 192.0.0.0	à 223.255.2	55.255	
110X XXXX	XXXX XXXX	XXXX XXXX	XXXX XXXX	
octet 1	octet 2	octet 3	octet 4	
partie réseau			partie hôte	

178 / 192

#### Masque de sous-réseau

Il permet d'identifier le réseau associé à une adresse IP.

Remarque : si on ajoute le nombre entre parenthèses, c'est pour indiquer la taille de l'adresse réseau.

La valeur binaire de 34.208.123.12 est 00100010.11010000.01111011.00001100 .

Un ET logique entre l'adresse IP et le masque donne ainsi le résultat suivant :

Il s'agit bien du réseau associé à l'adresse 34.208.123.12.

En généralisant, il est possible d'obtenir les masques par défaut correspondant à chaque classe d'adresse :

- Pour une adresse de Classe A, le masque est 255.0.0.0
- Pour une adresse de Classe B, le masque est 255.255.0.0
- Pour une adresse de Classe C, le masque est 255.255.255.0

#### Exercice

• Quelle est la classe d'adresse de la machine dont l'adresse IP est 144.19.74.201?

Quelle est la classe à duresse de la macrime dont l'auresse IP est 144.19.74.201
 Quelle est l'adresse du réseau ?

• Quel est l'identificateur de la machine dans le réseau?

• Quel est le masque réseau ?

144.19.0.0 74.201 255.255.0.0

#### Exercice

Compléter le tableau.

Note: on enlève toujours deux adresses:

- L'adresse du réseau : la partie hôte contient uniquement des 0 ;
- L'adresse de diffusion (broadcast) : la partie hôte contient uniquement des 1.

Classe	Adresse mini	Adresse maxi	Masque par défaut	Nombre de réseaux	Nombres de machines par réseau
A	0.0.0.4	127 - 255 - 255 - 254	255 • 0 • 0 • 0	27	224 2
В	128-0.0-1	191.255.255.254	255:255.0.0	214	216_2
С	192.0.0.1	223.255.255.254	255.255.255.0	.221	28 2

#### Création de sous-réseaux

Ce masquage divise donc un réseau de classe A en 4 sous-réseaux ; d'où le nom de *masque de sous-réseau*. Si on note N le nombre de bits attribués en plus au réseau, le **nombre de sous-réseaux** sera **2**^N

#### **Exercice**

- Pour l'adresse 145.245.45.225, donner
  - a) La classe d'adresse;
  - b) Le masque de sous-réseau et l'adresse du réseau;
  - c) Le nombre de machines possibles sur ce réseau;
- Pour une subdivision de ce réseau en 64 sous-réseaux, donner :
  - d) Le masque modifié;
  - e) L'adresse du sous-réseau auquel appartient la machine 145.245.45.225.
  - f) Le nombre de machines possibles par sous-réseau.
- a) Le premier octet de l'adresse est 1.4.5... : il s'agit d'une classe ...

Pour trouver l'adresse réseau, on va appliquer le masque de sous-réseau à l'adresse IP au travers d'une fonction "ET". Nous aurons ... 14.5. 2.45. 0.0......

- c) Le nombre de machines possibles sur ce réseau est ... 216. _. 2.
- e) Notre adresse IP 145.245.45.225 sera répartie comme suit :

Décimal	145	245	45	225
Binaire	• • • • • • •	• • • • •	001011 01	• • • • • •

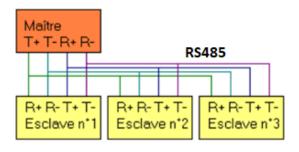
Pour trouver l'adresse de sous-réseau qui contient la machine 145.245.45.225, nous allons appliquer le masque de sous-réseau à l'adresse IP au travers d'une fonction "ET". Nous aurons :

f) Le nombre de machines possibles par sous-réseau est . 2 . _ 2 . _ = 1022 .

#### Réseau de terrain

Un bus de terrain est une ligne numérique, reliant différents types d'équipements d'automatisme au sein d'une zone géographique délimitée (usine, voiture, photocopieur ...). Les équipements de sécurité (frein ABS, capteur de vitesse, airbag...) d'une voiture moderne, communiquent à l'aide d'un bus de terrain.

Parmi les avantages des bus de terrain, on peut citer :


- Réduction massive du câblage, du temps d'installation, du matériel requis et des coûts de maintenance;
- Plus de précision grâce à la numérisation.

#### ⇒ Bus Modbus

Modbus (marque déposée par Modicon) est un protocole de communication utilisé pour des réseaux d'automates programmables. Il fonctionne selon une structure hiérarchisée entre un maître et plusieurs esclaves.

- Le maître envoie une demande et attend une réponse ;
- Deux esclaves ne peuvent dialoguer ensemble.

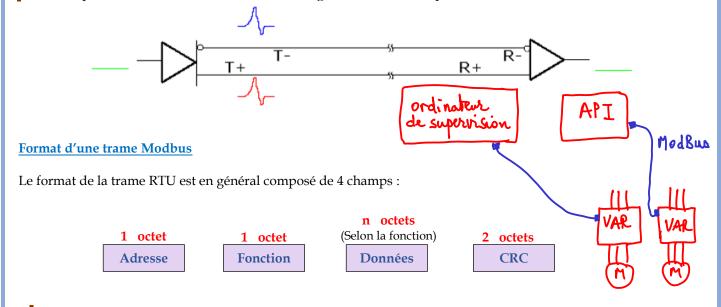
Le protocole MODBUS utilise généralement la transmission sérielle asynchrone RS232, RS422 ou RS485.





#### **RS-485**

C'est une liaison série, de type asynchrone, multipoints et différentielle ; débit élevé (jusqu'à 10 Méga bits/s) sur une distance importante (jusqu'à 1200 m). Elle dispose de 2 bornes d'émission polarisées notées T+, T- et de 2 bornes de réception polarisées notées R+, R-.


#### Liaison différentielle

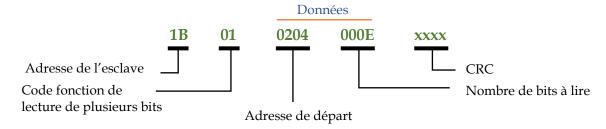
Sur une liaison différentielle (ou symétrique) les signaux (T+ et T-) sont transmis en opposition de phase. Le récepteur réalise la différence de ces deux signaux (R+ et R-) pour obtenir le signal utile.



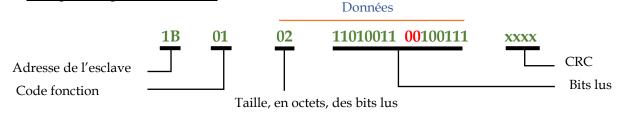
La paire de fils étant dans le même environnement. Donc, Si un parasite se produit, il se présente nécessairement sur les deux fils avec la même polarité.

Le récepteur, réalisant la différence des deux signaux, neutralise le parasite.




- Adresse : N° de l'esclave concerné par la requête ;
- Fonction : type d'action à réaliser ;
- Données : champ d'informations contenant les paramètres liés à la fonction : adresse mot, valeur de mot, nombre de mots, ...
- CRC (Cyclic Redundancy Check). : mot de contrôle de l'intégrité de la trame :
  - Le maître calcule le CRC codé sur 2 octets ;
  - L'esclave, lorsqu'il reçoit la trame, calcule le CRC et le compare au CRC reçu. En cas d'erreur, l'esclave répond par une trame d'exception.

La liste de quelques fonctions MODBUS est présentée dans le tableau suivant :

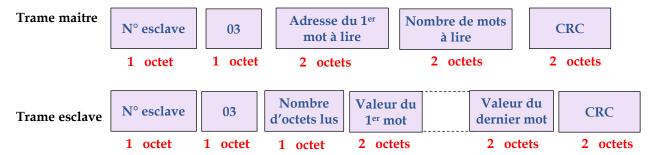

CODE en Hexa	FONCTION	
01	Lecture de N bits de sortie	
02	Lecture de N bits d'entrée	
03	Lecture de N mots de sortie	
04	Lecture de N mots d'entrée	
05	Ecriture d'un bit de sortie	
06	Ecriture d'un mot de sortie	
0F	Ecriture de N bits de sortie	
10	Ecriture de N mots	

### **Exemple de transaction maitre-esclave Modbus**

<u>Lecture par le maitre</u> des bits **204**_h à 211_h (soit 14 bits ou **0**E en hexa) sur l'esclave N° 27 (**1B** en hexa)



Exemple de réponse de l'esclave




#### Exercice

On considère les trames Modbus suivantes :

Requête émise par le maitre	04	03	1C	02	00	01	25	9F
Réponse émise par l'esclave	04	03	02	09	D5	74	DE	

Pour la fonction 03 (lecture de plusieurs mots), les trames maitre et esclave sont montées comme suit :



Compléter le décodage de ces messages Modbus.

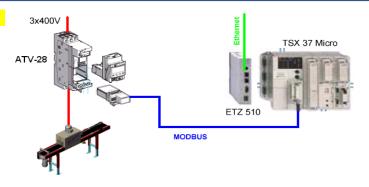
### Trame maitre

• Adresse de l'esclave • Code fonction • Nombre et adresse des mots à extraire • CRC

# Trame réponse esclave

• Adresse de l'esclave • *Code fonction* • Valeur du mot envoyé au maitre

CRC


:.259F...

#### Exercice

Donnez la trame MODBUS de lecture par le maître des mots qui se trouvent sur la plage d'adresse  $W450_{(10)}$  à  $W456_{(10)}$  sur un ATV-28 (ALTIVAR), esclave  $n^{\circ}2$ . (Le CRC n'est pas demandé)



Nombre de mots = .................................



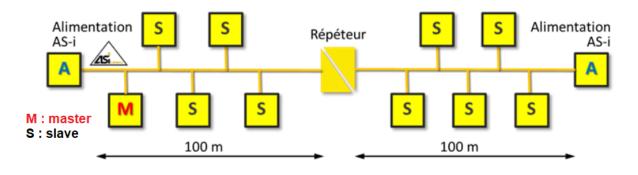
02	0.3	01 62	0.00.7	XX XX
N° de l'esclave	Instruction de lecture de N mots	Adresse de début	Nombre de mots	Valeur du CRC

#### Exercice

Donnez la trame MODBUS pour envoyer une question à l'esclave 4 pour charger la valeur 10 (10) dans le registre W252(10). La partie "Données", dans le cas de l'écriture de 1 mot, est composée de 4 octets : 2 octets de l'adresse de destination et de 2 autres de la valeur envoyée.

$$(252)_{10} = (... - ...)_{16}$$

Valeur envoyée = ... 10

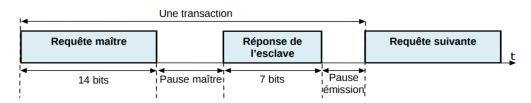

04	0.6	0.0 FC	OD OA	xx xx
N° de l'esclave	Instruction d'écriture d'un mot	Adresse de destination	Valeur envoyée	Valeur du CRC

## ⇒ Bus As-i

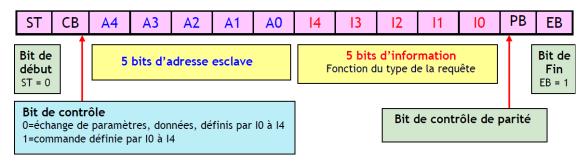
Un bus AS-i (en anglais Actuators Sensors Interface) est un bus de terrain de niveau 0 sur la pyramide CIM. Le bus AS-i étant un bus série, il permet de diminuer la longueur de câble nécessaire à l'utilisation d'un grand nombre de capteurs ou de pré-actionneurs.

La liaison physique est composée d'une simple paire de fils gainés d'un isolant jaune. Sur ces fils transitent les données ainsi que l'alimentation électrique.

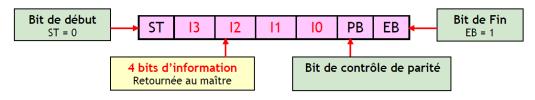
## Exemple de topologie




# Exemple d'équipements




## Protocole de communication As-i


La méthode d'accès du bus AS-i est de type maître-esclave. Le maître interroge chacune des stations esclaves sur le bus, il met à jour les sorties et acquiert l'état des entrées des esclaves.



La trame de requête du maître contient toujours 14 bits organisés de la façon suivante :



La trame de réponse de **l'esclave** contient toujours 7 bits organisés de la façon suivante :



# **Bus USB**

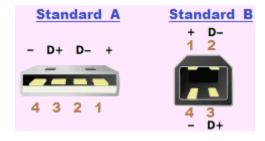
La technologie USB (Universal Serial Bus) est une interface d'entrée-sortie beaucoup plus rapide que les ports série standards. Si l'on veut exploiter plusieurs périphériques, on utilise un hub.

**Hub USB** 

ATC/2e STE



Types de connecteurs USB




Les avantages de L'USB sont nombreux :

- Faible coût;
- Indépendance vis à vis des machines hôtes ;
- Hot Plug & Play (c'est à dire branchement et débranchement sans avoir besoin d'arrêter le PC) ;
- Jusqu'à 127 périphériques possibles ;
- Fiabilité et sécurité ...

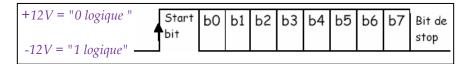
## Brochage des connecteurs USB

Broche	Désignation	Couleur du fil	
1	Alimentation +5V	Rouge	
2	Données (D-)	Blanc	
3	Données (D+)	Vert	
4	Masse (GND)	Noir	



caractère

į


<

=

> ?

# Exercice : Décodage d'une trame RS232

Dans une transmission série type RS232, un caractère est émis comme ceci :

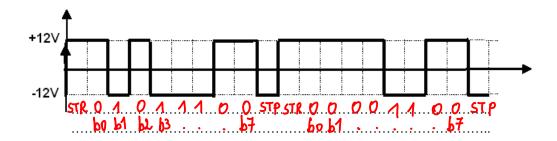


La trame d'envoi d'un caractère est donc composée de 10 bits :

- 1 bit de start;
- 8 bits du caractère émis b0 à b7; Exemple :  $si (b_7b_6b_5b_4b_3b_2b_1b_0) = (01000111) = (71)_{10}$ . D'après la table ASCII, le caractère transmis est G
- 1 bit de stop.

## Table du code ASCII

Décimal	Octal	héxa	binaire	caractère	Décimal	Octal	héxa	binaire
033	041	21	00100001	!	059	073	3B	00111011
034	042	22	00100010		060	074	3 C	00111100
035	043	23	00100011	#	061	075	3D	00111101
036	044	24	00100100	\$	062	076	3 E	00111110
037	045	25	00100101	%	063	077	3F	00111111
038	046	26	00100110	&	064	100	40	01000000
039	047	27	00100111	,	065	101	41	01000001
040	050	28	00101000	(	066	102	42	01000010
041	051	29	00101001	)	067	103	43	01000011
042	052	2 A	00101010	*	068	104	44	01000100
043	053	2B	00101011	+	069	105	45	01000101
044	054	2 C	00101100	,	070	106	46	01000110
045	055	2D	00101101	-	071	107	47	01000111
046	056	2E	00101110		072	110	48	01001000
047	057	2 F	00101111	/	073	111	49	01001001
048	060	30	00110000	0	074	112	4 A	01001010
049	061	31	00110001	1	075	113	4B	01001011
050	062	32	00110010	2	076	114	4 C	01001100
051	063	33	00110011	3	077	115	4D	01001101
052	064	34	00110100	4	078	116	4E	01001110
053	065	35	00110101	5	079	117	4 F	01001111
054	066	36	00110110	6	080	120	50	01010000
055	067	37	00110111	7	081	121	51	01010001
056	070	38	00111000	8	082	122	52	01010010
057	071	39	00111001	9	083	123	53	01010011
058	072	3A	00111010	:	084	124	54	01010100
					085	125	55	01010101


064	100	40	01000000	@
065	101	41	01000001	A
066	102	42	01000010	В
067	103	43	01000011	C
068	104	44	01000100	D
069	105	45	01000101	E
070	106	46	01000110	F
071	107	47	01000111	G
072	110	48	01001000	H
073	111	49	01001001	I
074	112	4 A	01001010	J
075	113	4B	01001011	K
076	114	4 C	01001100	L
077	115	4D	01001101	M
078	116	4E	01001110	N
079	117	4 F	01001111	0
080	120	50	01010000	P
081	121	51	01010001	Q
082	122	52	01010010	R
083	123	53	01010011	S
084	124	54	01010100	T
085	125	55	01010101	U
086	126	56	01010110	V
087	127	57	01010111	W
088	130	58	01011000	X
089	131	59	01011001	Y
090	132	5 A	01011010	Z

On considère la trame RS232 donnée ci-dessous.

- 1. Combien de caractères porte la trame ?

  La trame est composée de . 20 bits, elle est donc porteuse de . 2. caractères (puisque l'émission d'un seul caractère nécessite . . 10. bits)
- 3. En déduire la durée totale de la trame.

  La durée totale de la trame = 20 × 104 µs = 20 80 µs = 2,08 m s
- 4. Relever les bits  $(b_7b_6b_5b_4b_3b_2b_1b_0)$  pour chaque caractère. Pour le premier caractère, on relève  $(b_7b_6b_5b_4b_3b_2b_1b_0) = (.00.11.10.10...) = (3.A..)_{16}$ Pour le deuxième caractère, on relève  $(b_7b_6b_5b_4b_3b_2b_1b_0) = (.00.11...0000....) = (.30...)_{16}$
- 5. Utiliser la table ASCII pour déduire les caractères transmis.



D'après la table ASCII, le premier caractère est "......" alors que le second est "......".

### Exercice: examen national 2018, session normale

### Tâche 3: Communiquer les informations

Une voiture comporte en général plusieurs capteurs et actionneurs. Pour réduire de manière significative le coût de câblage, il fallait définir des **bus séries** simplifiant énormément l'intégration des fils dans le châssis. La transmission des données s'effectue sur une paire filaire différentielle.

Répondre aux questions 46, 47 et 48 suivantes en choisissant la bonne réponse (a ou b ou c) :

Question: 46. On utilise le bus série dans une voiture pour :

[1 pt]

- a) Simplifier l'intégration de fils dans le châssis;
- b) Augmenter le nombre de fils dans le châssis;
- c) Diminuer le nombre de microcontrôleurs dans la voiture.

Question: 47. Identifier la structure (topologie physique) du réseau utilisé dans une voiture :

[1 pt]

- a) Étoile-Bus;
- b) Anneau;
- c) Maille.

Question: 48. On utilise une liaison différentielle pour :

[1 pt]

- a) Avoir une meilleure immunité face aux perturbations électromagnétiques ;
- b) Augmenter le débit dans le réseau ;
- c) Diminuer les collisions dans le réseau.

## Format d'une Trame de Données :

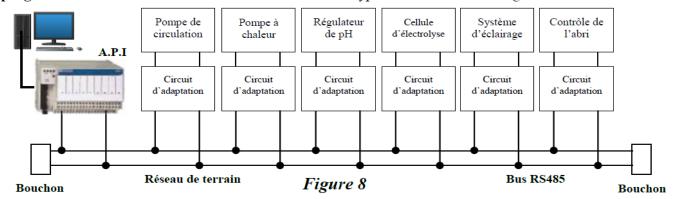
La trame de données dans ce bus, se décompose en 7 champs différents :

Bus inoccupé

Bus inoccupé

Début de	Champ	Champ de	Champ de	Champ de	Champ	Champ de fin
trame	d'arbitrage	contrôle	données	CRC	d'acquittement	de trame
1 bit	12 bits	<b>6</b> bits	<b>0</b> - <b>8</b> octets	2 octets	<b>2</b> bits	7 bits

- Le début de trame SOF (Start Of Frame), 1 bit (0 logique) ;
- Le champ d'arbitrage, 12 bits ;
- Le champ de contrôle, 6 bits ;
- Le champ de données, 0 à 64 bits ;
- Le champ de CRC (Cyclic Redundancy Code), 16 bits;
- Le champ d'acquittement (Acknoledge), 2 bits ;
- Le champ de fin de trame EOF (End Of Frame), 7 bits (1 logique).


Question: 49. Déterminer le nombre de capteurs/actionneurs TOR (Tout Ou Rien) qu'un nœud peut gérer dans une seule trame de données; [1 pt]

Question: 50. Déterminer alors, la longue	eur ( <b>nombre de bits</b> ) minimale et la longueu	r maximale d'une trame
de données.		[2 pts]
	y ste	
	Lar mark	
	Carley Joseph	
	The state of the s	•••••

Exercice : examen national 2019, session de rattrapage

#### **Tâche 3: Communiquer les informations**

Le constructeur propose au propriétaire un système de supervision à distance de la piscine par **automate programmable industriel** et une liaison différentielle de type **RS485** selon la configuration suivante :



Le propriétaire est ainsi renseigné sur l'état général de son installation, comme il peut la contrôler à distance. Répondre aux questions Q45, Q46 et Q47 suivantes en précisant la bonne réponse (a, b ou c).

Q.45- La liaison RS 485 est un (e):

[1 pt ]

- a) Liaison point à point ;
- b) Liaison multipoints;
- c) Port pour la communication prallèle.

Q.46- On utilise le circuit d'adaptation pour :

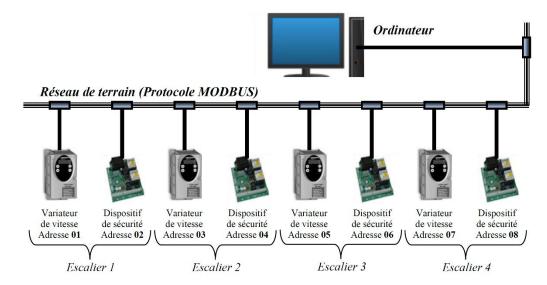
[1 pt ]

- a) Augmenter la vitesse de transmission ;
- b) Convertir une tension alternative en tension continue;
- c) Convertir une tension bipolaire en une tension différentielle.

Q.47- Le bouchon à l'extrémité du câble de transmission permet de :

[1 pt ]

- a) Diminuer le nombre de collisions;
- b) Amplifier le signal dans le câble de transmission ;
- c) Absorber le signal et l'empêcher de rebondir à l'extrémité du câble.


Sachant que les données transmises sont codées sur un octet (8 bits) entouré d'un bit de START et d'un bit de STOP et que la transmission se fait à une vitesse de 9600 bits/second.

Q.48-	Déterminer le <b>temps</b> de transmission d'un <b>bit</b> .	[1 pt ]
Q.49-	En déduire le <b>temps</b> de la transmission d'une <b>trame</b> .	[1 pt ]
		Da / a
		( ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		· N and
		30° 00°
		( D ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
••••••	<i>N</i>	
••••••	, ",	Jo
•••••	/ 80x /	n n n n n n n n n n n n n n n n n n n
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Exercice: examen national 2023, session normale

### Tâche 3 : Analyse d'une trame MODBUS

Un espace commercial utilise quatre escaliers mécaniques supervisés à distance par ordinateur et une liaison différentielle de type **RS485**, selon la configuration suivante :



On peut ainsi se renseigner sur l'état général des quatre escaliers, comme on peut les contrôler à distance.

Lire le document ressources **DRES 06** avant de répondre aux questions.

On désire vérifier à l'aide d'un analyseur de trame MODBUS, la configuration des variateurs ALTIVAR qui pilotent les différents moteurs des 4 escaliers.

Ces variateurs gèrent la vitesse des moteurs (accélération, décélération, grande vitesse, petite vitesse...) d'après les paramètres stockés sous forme de mots (double octet) dans leurs registres de configuration (mémoire interne).

On a relevé sur le bus les trames suivantes codées en hexadécimal :

#### Requête du maître (Ordinateur)

	05	03	2C92	0002	CRC		
-	Réponse de l'esclave (Variateur)						
	05	03	04	0064	0096	CRC	]
2C92 = 11410 en décimal $0064 = 100$ en décimal $0096 = 150$						= <b>150</b> en décim	al

Répondre aux questions suivantes en cochant les bonnes réponses.

**Q.40-** Avec quel esclave le maître entame-t-il un dialogue?

**Q.41-** Quel est le **but** de la requête du maître ?

**Q.42-** Quels sont les **paramètres** lus ou écrits? donner alors, leurs **valeurs** en Hz?

On souhaite changer le paramètre **SP2** de 100 (10 Hz) à 250 (25 Hz).

**Q.43-** Elaborer la trame MODBUS (requête du maitre et réponse de l'esclave) permettant de configurer à partir du maître le paramètre **SP2** (2^{ème} vitesse) à 250 (25 Hz) du variateur de vitesse de **l'escalier 4**. 2 pts

### **MODBUS**

#### 1. Présentation

191 / 192

Le tableau suivant indique quelques fonctions du protocole de communication MODBUS entre le maitre (Ordinateur) et l'esclave (Altivar 31).

Code fonction (décimal)	Nom des fonctions	Valeur maxi de N	
3	Lecture de N mots de sortie	29 mots maxi	
6	Ecriture d'un mot de sortie		
16	Ecriture de N mots de sortie	27 mots maxi	

## 2. Ecriture d'un mot de sortie : fonction 6 (06_H)

Cette fonction permet d'écrire un mot. Les formats des trames dans ce cas sont identiques.

### Requête du maître et réponse de l'esclave

	Adresse de	N° fonction	Adresse du mot		Valeur du mot		CRC		
]	l'esclave	N Tonction	PF	Pf	PF	Pf	PF	Pf	
	1 octet	1 octet	2 octets		2 00	etets	2 octets		

N.B: PF = poids fort Pf = poids faible  $1 \text{ mot} = 2 \text{ octets} = 2 \times 8 \text{ bits} = 16 \text{ bits}$ CRC (Cyclic Redundancy Code): 2 octets de contrôle de l'intégrité de la trame (non exploité dans le sujet).

## 3. Lecture de N mots de sortie : fonction 3 (03_H)

Cette fonction permet de lire un ou plusieurs mots, la lecture s'effectue à partir de l'adresse du premier mot puis par incrémentation de l'adresse.

## Requête du maître

	Adresse de l'esclave	N° fonction	Adresse du premier mot		Nombre de mots		CRC		
			PF	Pf	PF	Pf	PF	Pf	
	1 octet	1 octet	2 octets		2 00	etets	2 octets		

### Réponse de l'esclave

Adresse de	N°	Nombre	Valeur premier mot		Valeur dernier mot		CRC	
l'esclave	fonction	d'octets lus	PF	Pf	PF	Pf	PF	Pf
1 octet	1 octet	1 octet	2 octets		2 octets		2 octets	

### 4. Liste de quelques mots configurables de l'ALTIVAR 31 par trame MODBUS

Adresse MODBUS	Code	Nom / Description / Valeurs possibles				
11410 ₁₀ = 2C92 _{Hexa}	SP2	<ul> <li>2ème vitesse présélectionnée</li> <li>Unité: 0,1 Hz</li> <li>Réglage usine 100: (100 × 0,1 = 10 Hz)</li> <li>Plage de réglage: 0 à 5000</li> </ul>				
11411 ₁₀ = 2C93 _{Hexa}	SP3	<ul> <li>3ème vitesse présélectionnée</li> <li>Unité: 0,1 Hz</li> <li>Réglage usine 150: (150 × 0,1 = 15 Hz)</li> <li>Plage de réglage: 0 à 5000</li> </ul>				
11412 ₁₀ = 2C94 _{Hexa}	SP4	4ème vitesse présélectionnée  Unité: 0,1 Hz  Réglage usine 200: (200 × 0,1 = 20 Hz)  Plage de réglage: 0 à 5000				